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Abstract

New Algorithms for Three Combinatorial Optimization Problems on Graphs

by

Mark Velednitsky

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Ilan Adler, Chair

In this dissertation, we study three NP-hard combinatorial optimization problems phrased
on graphs. For each problem, we introduce one or more new algorithms tailored for the
problem.

The first problem is the minimum k-terminal cut problem. Given a graph and a distin-
guished subset of vertices (“terminals”), we would like to remove the minimum weight set
of edges that disconnect the terminals. We present a fixed-parameter-tractable branch-and-
bound algorithm for the problem. We also show that (k−1)-stable instances of k-terminal
cut can be solved optimally by calculating k − 1 minimum isolating cuts: minimum cuts
which separate one terminal from the rest. This analysis is tight: there exist (k−1−ε)-stable
instances for which the isolating cuts do not return the optimal solution.

The second problem concerns valid distance drawings of signed graphs. A valid distance
drawing of a signed graph in Rk is an embedding of the graph in Rk such that, for every vertex,
all its positive neighbors are closer than its negative neighbors. We address the question of
finding L(n), the smallest dimension such that every signed graph with n nodes has a valid
distance drawing in RL(n). In general, we show that blog5(n− 3)c + 1 ≤ L(n) ≤ n− 2. We
introduce a new algorithm for computing L(n) and then compute L(n) exactly up to n = 7.
We offer a conjecture for the value of L(n) for all n.

The third problem is the maximum online perfect bipartite matching problem with i.i.d.
arrivals. We introduce seven algorithms in two classes: three “flow-guided” algorithms
and four “evaluation-guided” algorithms. Two of the evaluation-guided algorithms can be
interpreted as derandomizations of flow-guided algorithms. We prove that at least three of
the algorithms are 0.5-competitive, which is the best possible competitive ratio. The seven
algorithms can be partially ordered: for some pairs, one may be expected to perform at least
as well as the other on all instances. Through theoretical and empirical results, we determine
all but four of the pairwise relations in this partial ordering.
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Chapter 1

Introduction

1.1 Motivation

When discussing problem and solutions in operations research and computer science, it is
important to distinguish between properties of problems and properties of algorithms.

For example, consider the problem of comparison-based sorting. There are a myriad
of sorting algorithms. Bubble Sort has complexity O(n2) and Merge Sort has complexity
O(n log n). These complexities are properties of the algorithms, not the problem. When we
say the “complexity of the comparison-based sorting problem,” we mean the best possible
theoretical complexity of any algorithm. From the analysis of Merge Sort, we know that the
complexity of comparison-based sorting is at most O(n log n). On the other hand, from a
separate analysis, we know that the complexity is at least Ω(n log n). Thus, we conclude
that the complexity of comparison-based sorting is exactly θ(n log n).

Similar properties appear throughout operations research and computer science, where
the same property can be the property of an algorithm or a property of a problem. For
example, approximation ratios and competitive ratios.

There are many techniques for proving inapproximability or other hardness results. These
often include specifying reductions from other problems with known hardness results. On the
other hand, showing a problem can be approximated or can be solved in a certain complexity
is often constructive.

Sometimes, new algorithms are devised with wide applicability to many problems. Con-
sider, for example, linear programming. The great advantage is that these new algorithms
can be implemented once and used many times. However, they may not advance our theo-
retical understanding of any one problem, in particular.

In this dissertation, we focus on the latter case. Rather than developing a new general-
purpose algorithm for several problems, we tailor one or more algorithms to the problem
at hand. In doing so, we push the theoretical understanding of a problem’s asymptotic
behavior.

Over three chapters, we consider three combinatorial optimization problems on graphs.
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The problems are unrelated. The unifying theme is our approach. For each problem, we
propose one or more new algorithms. Our analysis of the algorithms improves the current
state-of-the-art understanding of the limiting behavior of the problem.

1.2 Outline

In chapter 2, the problem we consider is the minimum k-terminal cut problem. Given
a graph and a distinguished set of vertices, called “terminals,” we would like to deter-
mine the minimum weight set of edges that must be removed to disconnect the terminals.
The k-terminal cut problem is known to be APX-hard for k ≥ 3. We present a new,
fixed-parameter-tractable branch-and-bound algorithm for k-terminal cut. Our branch-
and-bound algorithm uses a novel relaxation of the Călinescu-Karloff-Rabani [11] integer
programming formulation of k-terminal cut. We call our relaxation the isolating cut relax-
ation because we solve it using minimum isolating cuts, minimum (s, t)-cuts which separate
one terminal from the rest. We call our algorithm Isolating Cut Branch-and-Bound.
In an empirical experiment, we compare Isolating Cut Branch-and-Bound to linear-
programming-based branch-and-bound with Gurobi, a commercial mixed-integer program-
ming solver. On the twenty-four real-world benchmark instances, Isolating Cut Branch-
and-Bound outperforms linear-programming-based branch-and-bound with Gurobi.

We continue our treatment of the k-terminal cut problem by considering γ-stable in-
stances. An instance of k-terminal cut is γ-stable (γ > 1) if the optimal cut is unique and
the weight of edges in the optimal cut can be multiplied by up to γ without changing the
unique optimal cut. We prove that, in any (k − 1)-stable instance of k-terminal cut, the
source sets of the minimum isolating cuts return the optimal solution to that k-terminal
cut instance. Thus, an optimal solution to (k − 1)-stable instances of k-terminal cut can
be computed in the time it takes to compute k− 1 minimum (s, t)-cuts. Our result is tight.
We prove this by constructing (k − 1− ε)-stable instances of the k-terminal cut problem,
for 0 < ε < k − 2, in which the source set of the minimum isolating cuts for each terminal
are just the terminals themselves and do not return the optimal solution.

In chapter 3, we consider the problem of finding valid distance drawings of signed graphs
in Rk. We call an embedding of a signed graph G into Rk a valid distance drawing if, for
every vertex v, all the of positive neighbors of v are closer than all of its negative neighbors
(in terms of euclidean distance). We address the question of finding L(n), the smallest
dimension such that every signed graph with n nodes has a valid embedding in RL(n). In
general, we show that blog5(n − 3)c + 1 ≤ L(n) ≤ n − 2. We also phrase the embedding
problem as an optimization problem, introducing the algorithm Valid Drawing, which
attempts to find a valid drawing for a given input graph. Using our algorithm, we compute
L(n) exactly for small values of n (up to n = 7). From the results of these experiments, we
conjecture that the complete signed graph whose positive subgraph is the complete bipartite
graph Kbn/2c,dn/2e is the n-node signed graph requiring the most dimensions to embed. We
calculate an embedding for this graph up to n = 24, which suggests a pattern for the
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asymptotic behavior of L(n). We conjecture that L(n) ∼ 3
4
n.

In chapter 4, we consider a variant of the online bipartite matching problem. The variant
we consider is the maximum online perfect bipartite matching problem with i.i.d. arrivals.
We are given a set of n workers, a distribution over k job types, and non-negative utility
weights for each pair of worker and job type. This set-up is naturally modeled as a bipartite
graph on workers and job types. At each time step, a job is drawn i.i.d. from the distribution
over job types. Upon arrival, the job must be irrevocably assigned to a worker and cannot be
dropped. After n jobs have arrived, the assignment of workers to jobs is a perfect matching.
The goal is to maximize the expected sum of utilities of this perfect matching.

In the chapter, we introduce two classes of algorithms for the problem. The first is the
class of “flow-guided” algorithms, where the decision of which worker to assign at each step is
guided by an offline transportation problem between the workers and job types. The second
is the class of “evaluation-guided” algorithms. In evaluation-guided algorithms, the problem
is modeled as a Markov Decision Process (MDP). Instead of computing the exact expected
value of states in the MDP, which requires exponential time, an evaluation function is used
as a proxy. When the evaluation function is derived from the expected performance of an
algorithm, the resulting evaluation-guided algorithm can be thought of as a derandomization
of the algorithm used for evaluation.

A total of seven specific algorithms are introduced, including three flow-guided algorithms
and four evaluation-guided algorithms. We prove that one of the flow-guided algorithms,
which we call OPT -FLOW , is optimal among all flow-guided algorithms. We also prove
that at least three of the algorithms are 0.5-competitive, which is the best possible compet-
itive ratio. On the other hand, at least two of the baseline algorithms, a greedy algorithm
(GREEDY) and a purely random algorithm (RAND), have arbitrarily bad competitive ra-
tios. The seven algorithms can be partially ordered: for some pairs of the algorithms, we
can guarantee that one will always perform at least as well as the other, in expectation, on
all instances of the problem. Some of these relations are surprising. For example, it turns
out that a greedy algorithm always performs at least as well, in expectation, as the purely
random algorithm on all instances. Through a combination of theoretical and empirical
results, we determine all but four of the pairwise relations in this partial ordering.

We conclude the dissertation in chapter 5.
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Chapter 2

The k-terminal cut Problem

2.1 Introduction

In the k-terminal cut problem, also known as the multiterminal cut problem, we are
given an graph with edge weights and k distinct vertices called “terminals.” The goal is
to remove a minimum weight collection of edges from the graph such that there is no path
between any pair of terminals. The k-terminal cut problem is APX-hard for k ≥ 3 [19].

The k-terminal cut problem has a number of applications. Specific application areas
include distributing computational jobs in a parallel computing system [26], partitioning
elements of a circuit into sub-circuits that will be put on different chips [19], scheduling tasks
[35], understanding transportation bottlenecks [35], planning the “divide” step in divide-and-
conquer algorithms [29], and pre-processing an image for computer vision [7]. More generally,
graph cut problems, including k-terminal cut, have applications to graph clustering [24].
Minimizing the weight of edges between clusters is equivalent to maximizing the weight
within clusters. In a setting where the weights measure similarity between vertices, the
result is a graph clustering algorithm. Thus, k-terminal cut gives an explicit combinatorial
objective function for supervised graph clustering.

In an instance of k-terminal cut, minimum isolating cuts are minimum cuts which
separate one terminal from the rest of the terminals. They can give useful information
about the optimal solution: the source set of a terminal’s minimum isolating cut is a subset
of that terminal’s source set in an optimal solution [19]. Furthermore, the union of all the
edges of all the minimum isolating cuts, except for the cut with largest weight, is a (2−2/k)-
approximation for the k-terminal cut problem. This approximation was first proven by
Dahlhaus et al. [19].

Many approaches to the k-terminal cut problem have been studied. These approaches
include devising approximation algorithms for quickly finding approximate solutions, devis-
ing fixed-parameter tractable algorithms for solving the problem to optimality in exponential
time, or finding polynomial-time algorithms for special instances of the problem.

The (2 − 2/k)-approximation algorithm of Dahlhaus et al., using minimum isolating
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cuts, is considerably different from most other currently-known approximation algorithms for
k-terminal cut. Most of the other currently-known approximation algorithm for k-terminal
cut work by probabilistically rounding the linear programming relaxation of the Călinescu-
Karloff-Rabani (CKR) Integer Programming formulation, giving an approximation guarantee
in expectation [11, 33, 10, 55]. The earliest such rounding scheme, by Călinescu et al. [11],
delivered an approximation factor of 1.5. The best-to-date approximation factor, by Sharma
et al. [55], is 1.2965.

There also exist fixed-parameter tractable algorithms for solving k-terminal cut opti-
mally. It was first proven in 2004 that k-terminal cut is fixed-parameter tractable with
respect to the value of the optimal solution [47]. That proof was not constructive. A con-
structive proof in the form of an algorithm was given by Chen, Liu, and Lu [14], with running
time O(w(EOPT)4w(EOPT)n3), where w(EOPT) is the weight of the optimal cut and n is the
number of vertices in the graph. The algorithm of Chen, Liu, and Lu is of theoretical value.
To our knowledge, none of the aforementioned fixed-parameter tractable algorithms have
ever been implemented.

Bilu and Linial [6] introduced the concept of stability for graph cut problems. An instance
of k-terminal cut is said to be γ-stable (γ > 1) if the optimal cut remains uniquely optimal
when every edge in the cut is multiplied by a factor up to γ. The concepts of sensitivity
analysis and robustness in linear programming are closely related [53, 5]. Makarychev et
al. [43] showed that, for 4-stable instances of k-terminal cut, the solution to the linear
programming relaxation of the CKR formulation will necessarily be integer. The result was
later improved to (2 − 2/k)-stable instances using the same linear programming technique
[2].

Our contributions in this chapter are as follows:

1. We devise a fixed-parameter tractable branch-and-bound algorithm for the k-terminal
cut problem which relies on a new relaxation of the CKR integer programming formu-
lation. The new relaxation can be solved efficiently with minimum isolating cuts and,
for this reason, we call it the “isolating cut” relaxation. We call our branch-and-bound
algorithm Isolating Cut Branch-and-Bound.

2. We establish a connection between minimum isolating cuts and stability. We prove
that, in (k−1)-stable instances of k-terminal cut, the minimum isolating cuts return
the optimal solution. Our result is tight: we also exhibit (k − 1 − ε)-stable instances
(0 < ε < k−2) in which the minimum isolating cuts do not return the optimal solution.
As a corollary, we prove that Isolating Cut Branch-and-Bound terminates on
(k − 1)-stable instances after computing just k minimum isolating cuts.

3. We conduct an empirical study of optimization algorithms for k-terminal cut, in
which the performance of Isolating Cut Branch-and-Bound is compared to
branch-and-bound using the linear programming relaxation of the CKR Integer Pro-
gramming formulation of k-terminal cut. The linear programming branch-and-
bound algorithm is implemented with Gurobi, a commercial mixed-integer program-
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ming solver. The performance is evaluated for real-world instances and simulated data.
On twenty-four real-world benchmark data sets, with up to tens of thousands of vertices
and hundreds of thousands of edges, Isolating Cut Branch-and-Bound runs more
than 10× faster than Gurobi. On simulated data, the relative speedup of Isolating
Cut Branch-and-Bound over Gurobi grows with the size of the instance.

2.2 Preliminaries

The notation {G = (V,E,w), T} refers to an instance of the k-terminal cut problem, where
G = (V,E,w) is an undirected graph with vertices V and edges E. T = {t1, . . . , tk} ⊆ V is
a set of k terminals (k ≥ 2). The weight function, w, is a function from E to R+.

For an instance {G, T} of the k-terminal cut problem, we can refer to feasible solutions
in two equivalent ways. The first is in terms of the edges that are cut and the second is in
terms of the partition of V .

A set of edges EFEAS ⊆ E is a feasible solution to k-terminal cut if removing all the
edges in EFEAS ensures that there is no path between any pair of terminals. The notation
w(EFEAS) denotes the total weight of edges in EFEAS:

w(EFEAS) =
∑

e∈EFEAS

w(e).

An optimal solution, EOPT is a minimum-weight feasible solution.
An equivalent way to define a feasible solution is as partition of V into a collection of

k subsets (V1, . . . , Vk), where ti ∈ Vi ⊂ V for i ∈ {1, . . . , k}. The implied feasible solution
is the set of edges with endpoints in different sets. That is, EFEAS = {{vi, vj}|vi ∈ Vi, vj ∈
Vj, i 6= j}. We notate the total weight of edges that go between distinct subsets:

w(V1, . . . , Vk) =
∑
i

∑
j>i

w(Vi, Vj).

Referring to the optimal cut in terms of vertices, we use the notation V ∗1 , . . . , V
∗
k .

Combining the notation introduced in this section,

w(EOPT) = w(V ∗1 , . . . , V
∗
k ).

To introduce Isolating Cut Branch-and-Bound, we will sometimes want to work
with a collection of k disjoint sets (V1, . . . , Vk) where ti ∈ Vi but where some vertices in V
are not assigned to any of the k sets. We will call such collections sub-feasible collections.

Definition 2.1 (Sub-Feasible Collection). A collection of k disjoint subsets of V , (V1, . . . , Vk),
is called sub-feasible if ti ∈ Vi ⊂ V for i ∈ {1, . . . , k}.

Equivalently, we could say that a sub-feasible collection is a partition of a subset of V
such that ti ∈ Vi. A sub-feasible collection is a feasible solution if and only if

⋃k
i=1 Vi = V .

Given a sub-feasible collection, we can generate a feasible solution to k-terminal cut by
assigning the unassigned vertices to sets in the collection.
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Isolating Cuts

To introduce minimum isolating cuts, it is helpful to recall the minimum (s, t)-cut problem.
Given a graph G = (V,E,w) and terminals s and t, a minimum (s, t)-cut is a partition of
the set of vertices into two sets, a source set containing s and a sink set containing t, such
that the total weight of edges between the source set and the sink set is minimized.

Definition 2.2 (Minimum Vi-Isolating Cut). Given a sub-feasible collection (V1, . . . , Vk), a
minimum isolating cut for Vi is a minimum cut set which separates Vi from all the vertices
in ∪j 6=iVj. The notation I(Vi) denotes the source set of this minimum isolating cut.

The problem of calculating a minimum isolating cut for Vi can be reduced to the problem
of computing a minimum (s, t)-cut. This is accomplished by contracting all of the vertices
in Vi into a single source vertex s, contracting all the vertices ∪j 6=iVj into a single sink
vertex t, then calculating a minimum (s, t)-cut. It may be the case that there are several
minimum cuts. In such cases, it is always possible to efficiently compute the minimum cut
with maximum source set [25].

The definition we have stated here for minimum isolating cuts is slightly more general
than the definition that is typically used in the literature. We have defined isolating cuts for
any sub-feasible collection. Often, the only sub-feasible collection that is considered is the
collection of terminals: ({t1}, . . . , {tk}). When dealing with this sub-feasible collection, we
will refer to the minimum {ti}-isolating cut as the ti-isolating cut and notate it I(ti) instead
of I({ti}), omitting the set notation. Dahlhaus et al. [19] prove the following lemma:

Lemma 2.1 (Isolation Lemma). Let {G = (V,E,w), T} be an instance of k-terminal cut.
For all i, there exists an optimal solution (V ∗1 , . . . , V

∗
k ) in which I(ti) ⊆ V ∗i .

As an example, consider figure 2.1. In the unique optimal k-terminal cut, (V ∗1 , V
∗
2 , V

∗
3 , V

∗
4 ),

|V ∗i | = 3 for all i ∈ {1, 2, 3, 4}. The weight of the cut is w(V ∗1 , V
∗
2 , V

∗
3 , V

∗
4 ) = 8 (cutting the

four edges that form the central square). The t1-isolating cut consists of two vertices:

I(t1) = {t1, u1}.

The corresponding minimum cut has weight 3:

w(I(t1), V \ I(t1)) = 3.

The t4-isolating cut consists of three vertices: |I(t4)| = {t4, u4, v4}. The corresponding min-
imum cut has weight 4. For all four terminals, I(ti) ⊆ V ∗i . The isolation lemma proves that
this is always the case.

The CKR Formulation

In the literature, the following Integer Programming formulation of k-terminal cut is often
referred to as the Călinescu-Karloff-Rabani (CKR) formulation [11]. Assuming the Unique
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t1 t2

t3 t4

u1 u2

u3 u4

v1 v2

v3 v4

4

4

4

4

3

3

3

4

2

2 2

2

Figure 2.1: Example k-terminal cut instance, where k = 4

Games Conjecture, it has been proven that no other formulation can have a smaller integrality
gap [45].

The variable xti is a binary variable: it is 1 if vertex i is assigned to terminal t and 0
otherwise. If xti and xtj differ, then ztij is forced to be 1. In total, if there are n nodes and m
edges in G, the CKR formulation has k(n+m) variables and n+ 2km constraints.

min
∑

{i,j}∈E,t∈T

1

2
w({i, j})ztij (CKR)

s.t. ztij ≥ xti − xtj ∀{i, j} ∈ E, t ∈ T
ztij ≥ xtj − xti ∀{i, j} ∈ E, t ∈ T∑
t∈T

xti = 1 ∀i ∈ V

xti ∈ {0, 1} ∀i ∈ V, t ∈ T
ztij ∈ {0, 1} ∀{i, j} ∈ E, t ∈ T
xtt = 1 ∀t ∈ T

In this chapter, we consider two possible relaxations of the CKR formulation. The first
is the linear programming relaxation, in which we relax the constraints that xti and ztij are
integer:

xti ∈ {0, 1} → 0 ≤ xti ≤ 1

ztij ∈ {0, 1} → 0 ≤ ztij ≤ 1
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This relaxation can be solved efficiently with linear programming. The full relaxation is

min
∑

{i,j}∈E,t∈T

1

2
w({i, j})ztij (CKR-LP)

s.t. ztij ≥ xti − xtj ∀{i, j} ∈ E, t ∈ T
ztij ≥ xtj − xti ∀{i, j} ∈ E, t ∈ T∑
t∈T

xti = 1 ∀i ∈ V

0 ≤ xti ≤ 1 ∀i ∈ V, t ∈ T
0 ≤ ztij ≤ 1 ∀{i, j} ∈ E, t ∈ T
xtt = 1 ∀t ∈ T.

The second relaxation we can consider is one in which the variables remain integer, but
we relax the requirement that each vertex be assigned to a terminal, allowing some vertices
to be assigned to no terminals. Mathematically,∑

t∈T

xti = 1→
∑
t∈T

xti ≤ 1

We call this relaxation the “isolating cut” relaxation because, as we will see, it can be solved
efficiently using isolating cuts. The full relaxation is

min
∑

{i,j}∈E,t∈T

1

2
w({i, j})ztij (CKR-IC)

s.t. ztij ≥ xti − xtj ∀{i, j} ∈ E, t ∈ T
ztij ≥ xtj − xti ∀{i, j} ∈ E, t ∈ T∑
t∈T

xti ≤ 1 ∀i ∈ V

xti ∈ {0, 1} ∀i ∈ V, t ∈ T
ztij ∈ {0, 1} ∀{i, j} ∈ E, t ∈ T
xtt = 1 ∀t ∈ T.

2.3 A Branch-and-Bound Algorithm

In this section, we introduce our branch-and-bound algorithm for k-terminal cut: Iso-
lating Cut Branch-and-Bound. Our algorithm follows the same blueprint as linear
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programming branch-and-bound, but uses the relaxation CKR-IC instead. At each node in
the branch-and-bound tree, we solve the isolating cut relaxation CKR-IC. This solution can
be calculated with minimum isolating cuts. The objective value of the solution provides a
bound. When we branch, we take a vertex which is not assigned to any terminal and consider
assigning it to each terminal in turn, creating k children nodes.

Before we get into the details, some general notation: let T denote the incumbent branch-
and-bound tree and let d ∈ T be a node in the tree. We will use nodes when referring to the
branch-and-bound tree T and vertices when referring to V in the original graph G.

Solving the Isolating Cut Relaxation

Consider the relaxation CKR-IC. We will show that this relaxation can be solved efficiently
by computing k minimum isolating cuts. Consider a feasible setting of the xti variables. Let
Vt be the set of vertices which are assigned to terminal t in this solution:

Vt = {i|xti = 1}.

The constraint
∑

t∈T x
t
i ≤ 1 ensures that each vertex in the graph is in at most one of the

Vt. Thus, (V1, . . . , Vk) is a sub-feasible collection.
Because we are minimizing, in an optimal solution the variable ztij takes on the value 1

if and only if i ∈ Vt, j /∈ Vt (or vice versa). The objective function can thus be rewritten∑
t∈T

∑
{i,j}∈E

1

2
w({i, j})ztij =

∑
t∈T

1

2
w(Vt, V \ Vt).

The cut (Vt, V \Vt) isolates the terminal t, so this objective is the sum of k isolating cuts, one
for each terminal. Thanks to lemma 2.1, we know that it is possible to compute k minimum
isolating cuts, one for each terminal, which do not overlap. Thus, to find the optimal solution
to relaxation CKR-IC, we take k minimum isolating cuts and set xti = 1 if and only if i is in
the minimum isolating cut for terminal t.

Beyond the root node of the Isolating Cut Branch-and-Bound tree, we will stipu-
late that certain vertices must be assigned to certain terminals. This is equivalent to adding
the constraint xti = 1 for certain pairs i ∈ V and t ∈ T . We say that i ∈ V is fixed to t ∈ T
if we have added such a constraint. Let Fd,t be the set of vertices fixed to terminal t in node
d.

With these added constraints, the relaxation can still be solved by a series of minimum
isolating cuts. The key realization is that the cuts (Vt, V \ Vt) (as defined earlier) are Fd,t-
isolating for the sub-feasible collection (Fd,1, . . . , Fd,k). As before, an optimal solution can
be found by taking k minimum Fd,t-isolating cuts, one for each t ∈ {1, . . . , k}.
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Algorithm 2.1 Isolating Cut Branch-and-Bound

Input: G = (V,E): an instance of k-terminal cut.
Output: (V1, . . . , Vk): an optimal solution to k-terminal cut.

1: set d to root node
2: while optimal solution not found do
3: solve relaxation CKR-IC at d
4: if d has unassigned vertices then
5: variable selection: choose vertex ` unassigned in d . see section 2.6
6: for t = 1 . . . k do
7: Create a new child of d with the constraint xt` = 1
8: end for
9: end if

10: node selection: choose node d unexplored in T . see section 2.6
11: end while
12: return optimal the optimal solution.

Branching

At each node of the tree, d ∈ T, we keep track of two sub-feasible collections. The first is the
collection of fixed vertices (Fd,1, . . . , Fd,k). The second is the feasible solution to relaxation
CKR-IC: Vd,i ⊂ V , i ∈ {1, . . . , k}.

We will say that a vertex ` ∈ V is unassigned in d ∈ T if it is not in any of the Vd,t. In
our branching step, we choose an unassigned vertex ` in d and create k children of d in T
by assigning ` to each of the Fd,t. Equivalently, we create k children where xt` = 1 for each
t = {1, . . . , k}.

Algorithm 2.1 is the pseudo-code of the Isolating Cut Branch-and-Bound algo-
rithm. Figure 2.2 provides an illustration.

An important realization is that we do not need to recompute all k minimum isolating
cuts at every node in T. In fact, at every node except the root node we only need to
recompute one minimum isolating cut: the minimum isolating cut corresponding to the set
to which ` was added. To be precise, assume that from node d to its child we add the
unassigned vertex to Fd,i:

(Fd,1, . . . , Fd,i, . . . , Fd,k)→ (Fd,1, . . . , Fd,i ∪ `, . . . , Fd,k).

For j 6= i, the minimum Fd,j-isolating cut in the former, (Vd,j, V \ Vd,j), must still be a
minimum Fd,j-isolating cut in the latter. This is because ` was already in V \ Vd,j, so
(Vd,j, V \ Vd,j) continues to be a minimum isolating cut. Thus, we only need to recompute
the minimum isolating cut for Fd,i ∪ `. When we recompute this minimum cut, we will take
the minimum isolating cut with maximum source set. For the reasoning behind this, see
section 2.5.
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(F0,1, F0,2, F0,3)
(V0,1, V0,2, V0,3)

F2,1 ← F0,1

F2,2 ← F0,2 ∪ {`}
F2,3 ← F0,3

V2,1 ← V0,1
V2,2 ← I(F2,2)
V2,3 ← V0,3

F1,1 ← F0,1 ∪ {`}
F1,2 ← F0,2

F1,3 ← F0,3

V1,1 ← I(F1,1)
V1,2 ← V0,2
V1,3 ← V0,3

F3,1 ← F0,1

F3,2 ← F0,2

F3,3 ← F0,3 ∪ {`}

V3,1 ← V0,1
V3,2 ← V0,2

V3,3 ← I(F3,3)

Figure 2.2: Example of the branch-and-bound tree when k = 3.

Bounding

As in most branch-and-bound algorithms, at node d in the branch-and-bound tree we derive
a bound equal to the objective value of the relaxation at d. The bound at node d serves as
a lower bound on any feasible solution that will be found at any descendent of d. Thus, we
can prune nodes for which the bound is greater than or equal to the best feasible solution
found so far.

At node d in the tree, we compute L(d), the objective function of CKR-IC:

L(d) =
1

2

k∑
i=1

w(Vd,i, V \ Vd,i).

If there are no unassigned vertices, then d is a leaf node. At a leaf node, the sets (Vd,1, . . . , Vd,k)
induce a feasible solution to the k-terminal cut instance.

Even if we are not at a leaf node, we can heuristically generate a good feasible solution
at a node d by assigning all the unassigned vertices to the same terminal. To be precise, let

Ud = V \
k⋃
t=1

Vd,t

be the unassigned vertices at node d. Without loss of generality, assume that w(Vk, V \ Vk)
is the largest among the w(Vi, V \ Vi). Our proposed feasible solution is

(Vd,1, Vd,2, . . . , Vd,k−1, Vd,k ∪ Ud).
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2.4 Isolating Cuts in Stable Instances

Stable instances of k-terminal cut are special instances in which the optimal solution
remains optimal even when the weights of the graph are perturbed. In order to formally
define γ-stable instances, we first define the notion of a γ-perturbation.

Definition 2.3 (γ-Perturbation). Let G = (V,E,w) be a weighted graph with edge weights
w. Let G′ = (V,E,w′) be a weighted graph with the same set of vertices V and edges E and
a new set of edge weights w′ such that, for every e ∈ E and some γ > 1,

w(e) ≤ w′(e) ≤ γw(e).

Then G′ is a γ-perturbation of G.

Stable instances are instances where the optimal solution remains uniquely optimal for
any γ-perturbation of the weighted graph.

Definition 2.4 (γ-Stability). An instance {G = (V,E,w), T} of k-terminal cut is γ-
stable (γ > 1) if there is an optimal solution EOPT which is uniquely optimal for k-terminal
cut for every γ-perturbation of G.

Note that the optimal solution need not be γ times as good as any other solution, since
two solutions may share many edges. Given an alternative feasible solution, EFEAS, to the
optimal cut, EOPT, in a γ-stable instance, we can make a statement about the relative weights
of the edges where the cuts differ. The following equivalence was first noted in [43]:

Lemma 2.2 (γ-Stability). Let {G = (V,E,w), T} be an instance of k-terminal cut with
optimal cut EOPT. G is γ-stable (γ > 1) if and only if, for every alternative feasible k-
terminal cut EFEAS 6= EOPT, we have

w(EFEAS \ EOPT) > γw(EOPT \ EFEAS).

Now, we present a new characterization of γ-stable instances. A key realization is that
we do not need to consider every γ-perturbation of G in order to check for γ-stability. In
fact, there is one γ-perturbation which is, in a sense, the “worst” one: the γ-perturbation
in which we multiply the edges in EOPT by γ and leave the rest unchanged. If we find a set
of edges with this property, then our instance is γ-stable. We summarize this idea in lemma
2.3.

Lemma 2.3 (Checking γ-Stability). Consider an instance of k-terminal cut: {G =
(V,E,w), T}. Let E∗ ⊆ E be a subset of the edges. For some γ > 1, consider the instance
{G′ = (V,E,w′), T}, where

w′(e) =

{
γw(e) e ∈ E∗

w(e) e /∈ E∗.

If E∗ is the unique optimal solution to k-terminal cut in {G′, T}, then the instance {G, T}
is γ-stable and E∗ is the unique optimal solution to k-terminal cut in {G, T}.
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Proof. First, we claim that E∗ is the unique optimal solution in G. For any alternative
feasible cut Ē,

w′(E∗) < w′(Ē).

By construction, γw(E∗) = w′(E∗) and w′(Ē) < γw(Ē). Thus,

w(E∗) < w(Ē).

Thus, E∗ is optimal in G.
Now, consider an alternative feasible cut Ē. We express its weight in G′ in terms of its

weight in G:

w′(Ē) = w′(Ē \ E∗) + w′(Ē ∩ E∗)
= w(Ē \ E∗) + γw(Ē ∩ E∗).

We do the same for E∗:

w′(E∗) = w′(E∗ \ Ē) + w′(E∗ ∩ Ē)

= γw(E∗ \ Ē) + γw(E∗ ∩ Ē).

Thus,
w′(E∗) < w′(Ē) ⇐⇒ γw(E∗ \ Ē) < w(Ē \ E∗).

From lemma 2.2, we conclude that {G, T} is γ-stable.

We make a few observations about γ-stability:

Fact 2.1. Any k-terminal cut instance that is stable with γ > 1 must have a unique
optimal solution.

Proof. By Definition 2.3, any graph is a γ-perturbation of itself. Thus, by Definition 2.4,
the optimal solution must be unique.

Fact 2.2. Any k-terminal cut instance that is γ2-stable is also γ1-stable for any 1 < γ1 <
γ2.

Proof. The set of γ1-perturbations is a subset of the set of γ2-perturbations, since

w(e) ≤ w′(e) ≤ γ1w(e) =⇒ w(e) ≤ w′(e) ≤ γ2w(e).

Thus, for example, every instance which is 4-stable is necessarily 2-stable. On the other
hand, there exist instances which are 2-stable but not 4-stable.

Now we turn to studying the special behavior of isolating cuts in stable instances of the
k-terminal cut problem.
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I(t1)

I(t2)

I(t3)

R1

R2

R3

(a) The optimal partition, in which each set
of vertices, Ri, is in a source set with its
respective I(ti).

I(t1)

I(t2)

I(t3)

R1

R2

R3

(b) The alternative partition used in theorem
2.1 when i = 2, where all of the R are in a
source set with I(t2).

Figure 2.3: The sets I(t1), I(t2), I(t3) and R1, R2, R3 defined in theorem 2.1 when k = 3.
Solid lines represent edges which are in the cut. Dashed lines represent edges which are not
in the cut.

In lemma 2.1, the qualification that there exists an optimal solution in which I(ti) ⊆ V ∗i
can create complications, since the equation I(ti) ⊆ V ∗i need not be simultaneously true for
all i. Conveniently, when an instance is γ-stable (γ > 1), it has a unique optimal solution
(fact 2.1). Thus, in such instances, the condition I(ti) ⊆ V ∗i will be simultaneously true for
all i.

Theorem 2.1. Let {G = (V,E,w), T} be a (k − 1)-stable instance of k-terminal cut.
Then, for all i, I(ti) = V ∗i .

Proof. We will primarily be working with the k vertex sets I(t1), . . . , I(tk) and the k vertex
sets V ∗1 \ I(t1), . . . V

∗
k \ I(tk). For convenience, we will use the notation Ri = V ∗i \ I(ti). As

a consequence of lemma 2.1, V ∗i = I(ti)∪Ri. We will assume, for the sake of contradiction,
that at least one Ri is non-empty.
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Since I(ti) is the source set for the minimum isolating cut for terminal ti:

w(I(ti), V \ I(ti)) ≤ w(V ∗i , V \ V ∗i )

⇐⇒ w(I(ti), V \ I(ti)) ≤ w(Ri, V \ V ∗i ) + w(I(ti), V \ V ∗i )

⇐⇒ −w(I(ti), V \ V ∗i ) + w(I(ti), V \ I(ti)) ≤ w(Ri, V \ V ∗i )

⇐⇒ w(I(ti), Ri) ≤ w(Ri, V \ V ∗i )

⇐⇒ w(I(ti), Ri) ≤
∑
{j|j 6=i}

w(Ri, Rj) +
∑
{j|j 6=i}

w(Ri, I(tj))

Summing these inequalities over all the i:∑
i

w(I(ti), Ri) ≤
∑
i

∑
{j|j 6=i}

w(Ri, Rj) +
∑
i

∑
{j|j 6=i}

w(Ri, I(tj))

⇐⇒
∑
i

w(I(ti), Ri) ≤ 2w(R1, . . . , Rk) +
∑
i

∑
{j|j 6=i}

w(Ri, I(tj)) (2.1)

Next, we will consider alternatives to the optimal cut (V ∗1 , . . . , V
∗
k ) and apply lemma 2.2.

The optimal cut can be written as

(V ∗1 , . . . , V
∗
k ) = (I(t1) ∪R1, . . . , I(tk) ∪Rk).

We will consider alternative cuts E
(i)
FEAS where all the Rj are in the same set of the partition,

associated with I(ti). That is, we will consider(
I(t1), . . . , I(ti−1), I(ti) ∪ (R1 ∪ . . . ∪Rk), I(ti+1), . . . , I(tk)

)
.

See figure 2.3 for an illustration. We assumed that at least one of the Ri is non-empty, so
at least k − 1 of these alternative cuts are distinct from the optimal one1. In order to apply
lemma 2.2, we need to calculate w(EOPT \ E(i)

FEAS) and w(E
(i)
FEAS \ EOPT).

To calculate w(E
(i)
FEAS \ EOPT), consider the edges in E

(i)
FEAS with one endpoint in I(tj)

(j 6= i). The only edges which are not counted in EOPT are those which go to Rj. Thus,

w(E
(i)
FEAS \ EOPT) =

∑
{j|j 6=i}

w(Rj, I(tj)).

To calculate w(EOPT \E(i)
FEAS), we must consider the set of edges which are in EOPT but

not in E
(i)
FEAS. For an edge not to be in E

(i)
FEAS, it must be internal to one of the I(tj) (j 6= i)

1If only one Ri is non-empty, then EOPT = E
(i)
FEAS for this i. The corresponding inequality in Equation

2.2 is not strict (both sides are 0), but the other k − 1 inequalities are strict and so the average (Equation
2.3) is still a strict inequality.
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or internal to I(ti)∪ (R1 ∪ . . .∪Rk). None of the internal edges of the I(tj) are in EOPT, so
we need only consider the internal edges of I(ti) ∪ (R1 ∪ . . . ∪Rk):

w(EOPT \ E(i)
FEAS) = w(R1, . . . , Rk) +

∑
{j|j 6=i}

w(Rj, I(ti)).

We apply lemma 2.2, with γ = k − 1:

(k − 1) · w(EOPT \ E(i)
FEAS) < w(E

(i)
FEAS \ EOPT) (2.2)

Substituting in the formulas derived earlier for w(EOPT \ E(i)
FEAS) and w(E

(i)
FEAS \ EOPT):

(k − 1) · w(R1, . . . , Rk) + (k − 1) ·
∑
{j|j 6=i}

w(Rj, I(ti)) <
∑
{j|j 6=i}

w(Rj, I(tj)).

Averaging over the k inequalities (one for each i)1:

(k − 1) · w(R1, . . . , Rk) +
k − 1

k

∑
i

∑
{j|j 6=i}

w(Rj, I(ti)) <
k − 1

k

∑
i

w(Ri, I(ti)). (2.3)

We combine this with the inequality derived in Equation 2.1:

(k − 1) · w(R1, . . . , Rk) +
k − 1

k

∑
i

∑
{j|j 6=i}

w(Rj, I(ti))

< 2
k − 1

k
w(R1, . . . , Rk) +

k − 1

k

∑
i

∑
{j|j 6=i}

w(Ri, I(tj)).

Notice that ∑
i

∑
{j|j 6=i}

w(Rj, I(ti)) =
∑
i

∑
{j|j 6=i}

w(Ri, I(tj)).

Therefore,

(k − 1) · w(R1, . . . , Rk) < 2
k − 1

k
w(R1, . . . , Rk).

This is a contradiction, so it must be the case that Ri = ∅ for all i. Thus, I(ti) = V ∗i for
all i.
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t1

t2

t3

t4

t5

s1

s2

s3

s4

s5

b

c
a

(a) Dotted lines have weight a (between si
and sj , i 6= j) and are in E∗. Solid lines have
weight b (between ti and si) and are not in
E∗. Dashed lines have weight c (between ti
and sj , i 6= j) and are in E∗.

t1

t2

t3

t4

t5

s1

s2

s3

s4

s5

(b) When p = 3, we assume V ∗1 =
{t1, s1, s2, s3}. It follows that V ∗2 = {t2} and
V ∗3 = {t3}. We eventually arrive at a con-
tradiction, showing that this cannot be the
optimal cut.

Figure 2.4: The construction used in theorem 2.2 when k = 5

To prove that that the factor of (k− 1) is tight, it would be sufficient to find an instance
which is (k − 1 − ε)-stable, for arbitrarily small ε > 0, for which I(ti) 6= V ∗i for some i. In
fact, we will exhibit an instance with a stronger property: I(ti) 6= V ∗i for all i.

Theorem 2.2. For all 0 < ε < k−2, there exists a (k−1−ε)-stable instance of k-terminal
cut for which I(ti) = {ti} 6= V ∗i for all i ∈ {1, . . . , k}.

Proof. Consider a graph with 2k vertices. There are k terminals, T = {t1, . . . , tk}, and k
other vertices S = {s1, . . . , sk}. The

(
k
2

)
edges between si and sj (i 6= j) have weight a ∈ R+.

The k edges from ti to si have weight b ∈ R+. The k(k − 1) edges from ti to sj (i 6= j)
have weight c ∈ R+. No other edges exist. Call this graph Gk. See figure 2.4a for an
illustration. We will show that this graph has the property I(ti) = {ti} 6= {ti, si} = V ∗i ∀i
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for the following choices of a, b, c ∈ R+:

a = 2ε

b = k(k − 1)(k − 1− ε)
c = k(k − 1)− (k + 1)ε.

For 0 < ε < k− 2, these values of a, b, and c are all well-defined and Gk is (k− 1− ε)-stable.
We will be using the idea presented in lemma 2.3. Consider the collection of k sets

Vi = {ti, si} for i ∈ {1, . . . , k}. Let E∗ be the set of edges which go between these sets. That
is, E∗ consists of all the edges of weight a and all the edges of weight c. Let G′k be the graph
in which the edges of weight b have their weight divided by (k − 1− ε) (which is equivalent
to multiplying the edges of E∗ by (k − 1− ε) and then re-scaling):

a′ = 2ε

b′ = k(k − 1)

c′ = k(k − 1)− (k + 1)ε.

We will show that Vi = {ti, si} is the unique optimal solution in G′k. From lemma 2.3, it will
follow that the instance {Gk, T} is (k − 1− ε)-stable with optimal cut E∗.

Let (V ∗1 , . . . , V
∗
k ) be the optimal solution to k-terminal cut in G′k, where ti ∈ V ∗i . Note

that minimizing the cut between the V ∗i is equivalent to maximizing the edges internal to to
the V ∗i . For this proof, it is easier to think in terms of this equivalent maximization problem.

First, we claim that
|V ∗i | > 1 =⇒ si ∈ V ∗i .

The condition |V ∗i | > 1 means that V ∗i consists of more than just the terminal ti. Assume,
for the sake of contradiction, that |V ∗i | > 1 but si /∈ V ∗i . There must be some sj 6= si in
V ∗i and there must be some V ∗` such that si ∈ V ∗` . Consider a “swap” operation, where we
assigned si to V ∗i and sj to V ∗` . The total number of edges of weight a′ internal to V ∗i and V ∗`
remains unchanged. However, the edge {ti, si} of weight b′ is now internal to V ∗i , replacing
the edge {ti, sj} of weight c′. This improves the cut. Thus, it must be the case that si ∈ V ∗i .

Without loss of generality, assume that V ∗1 is the largest set among the V ∗i and that V ∗1
contains {s1, . . . , sp}. From our claim in the previous paragraph, it follows that |V ∗2 | = . . . =
|V ∗p | = 1. See figure 2.4b for an illustration. Internal to V ∗1 are

(
p
2

)
edges of weight a′, 1 edge

of weight b′, and p − 1 edges of weight c′. What if, instead, we re-assigned the sj to their
respective Vj, for j ∈ {2, . . . , p}? If we did this, consider the edges internal to V ∗1 , . . . , V

∗
p : 0

edges of weight a′, p edges of weight b′, and 0 edges of weight c′. The improvement would
be:

pb′ − (

(
p

2

)
a′ + b′ + (p− 1)c′) = (p− 1)(k + 1)ε− p(p− 1)ε > 0.

This proves that V ∗1 = {t1, s1} and, therefore, V ∗i = {ti, si}, as desired.
Last but not least, we need to check that, as claimed, the minimum isolating cuts in

Gk have trivial source sets. Knowing that V ∗i = {ti, si} and, thanks to lemma 2.1, that
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I(ti) ⊆ V ∗i , there are only two possibilities for I(ti). Either I(ti) = {ti} or I(ti) = {ti, si}.
I(ti) = {ti} if and only if

b+ (k − 1)c < (k − 1)a+ 2(k − 1)c

⇐⇒ b < (k − 1)(a+ c)

⇐⇒ k(k − 1− ε) < k(k − 1)− (k + 1)ε+ 2ε

⇐⇒ 0 < ε

Thus, our construction has the property I(ti) = {ti} 6= {ti, si} = V ∗i ∀i for any ε in (0, k −
2).

Approximation Revisited

From theorem 2.2, it follows that the (2− 2/k)-approximation algorithm of Dahlhaus et al.
does not deliver an optimal solution on the constructed (k − 1 − ε)-stable instance. It is
interesting to consider whether the approximation ratio is better than (2 − 2/k). Let EISO

be the union of the edges in all the isolating cuts except the one with largest weight. We
calculate, for ε ∈ (0, k − 2):

w(EISO)

w(EOPT)
=

(k − 1)(b+ (k − 1)c)(
k
2

)
a+ k(k − 1)c

=
(k − 1)(2k(k − 1)(k − 1− ε)− (k − 1)ε)

k(k − 1)ε+ k(k − 1)k(k − 1− ε)− k(k − 1)ε

=
2k(k − 1)(k − 1− ε)− (k − 1)ε

k2(k − 1− ε)

= (2− 2/k)− (k − 1)ε

k2(k − 1− ε)
.

When ε = 0, w(EISO) = w(EOPT). Thus,

w(EISO)

w(EOPT)
=

{
(2− 2/k)− (k−1)ε

k2(k−1−ε) ε ∈ (0, k − 2)

1 ε = 0.

This result is somewhat surprising. While one might expect the approximation ratio to
improve on more stable instances, we find the opposite: as ε → 0, the (k − 1 − ε)-stable
instance becomes more stable, but the approximation ratio gets worse (larger).

2.5 Complexity Analysis

In Isolating Cut Branch-and-Bound, the number of children of each tree node is k,
because we consider adding the selected unassigned vertex to each of the k possible terminals.
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Recall that

L(d) =
1

2

k∑
i=1

w(Vd,i, V \ Vd,i)

and that Vd,t = I(Fd,t). As we go from a parent to its child, we fix an unassigned vertex `
to a terminal t and take a new isolating cut: I(Fd,t ∪ `). This isolating cut also isolates Fd,t.
If we assume that I(Fd,t) had maximum source set, then I(Fd,t ∪ `) cannot be a minimum
isolating cut for Fd,t, so it must have strictly larger weight. When the edge weights are

integer, the increase must be at least 1
2
. L(d) is at least w(EOPT)

2
at the root node (d = 0)

and exactly w(EOPT) at a node with an optimal solution. Thus, w(EOPT) is a bound on the
depth of the tree. If we sum over the number of possible nodes at depths 1, 2, . . . , w(EOPT),
we see that the number of nodes considered is at most

1 + k + k2 + . . .+ kw(EOPT) < 2kw(EOPT).

Let C(n,m) be the complexity of evaluating a minimum (s, t)-cut on a graph with n
vertices and m edges. The complexity of Isolating Cut Branch-and-Bound is thus
O(2kw(EOPT)C(n,m)) on general instances. From this, we have fixed-parameter tractability.
In (k − 1)-stable instances, Isolating Cut Branch-and-Bound terminates after com-
puting the initial k isolating cuts. The complexity of computing k minimum isolating cuts
is O(kC(n,m)).

Using the push-relabel maximum flow algorithm, we have C(n,m) = O(mn log n2

m
). If we

ignore logarithmic factors and assume m > n, then the complexity of calculating k minimum
isolating cuts is Õ(km2). Earlier, Angelidakis et al. proved that (2−2/k)-stable instances of
k-terminal cut can be solved to optimality by solving the linear programming relaxation
of the CKR formulation (formulation CKR-LP). In these stable instances, the solution to
the relaxation will necessarily be integer [2]. The number of variables in the CKR relaxation
is k(n + m) and the number of constraints is n + 2km. Because the CKR linear program
has a binary constraint matrix, it is known that it can be solved in strongly polynomial time
[54]. That said, even if we knew exactly which variables were in the basis in the optimal
solution, determining their values would require solving a system of linear equations with
min {k(n+m), n+ 2km} variables and equations. Such an operation would be at least
quadratic in the number of variables. This suggests that solving the CKR relaxation has
complexity Ω(k2m2). In fact, using the current best-known algorithms for matrix inversion,
the complexity of solving the relaxation would be Ω(k2.37m2.37) [15, 41].

2.6 Empirical Study

Isolating Cut Branch-and-Bound Implementation

Our implementation is available online at

https://github.com/marvel2010/k-terminal-cut
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and works as a Python package (ktcut). It represents graphs using NetworkX [28]. We chose
Python for ease of implementation and portability, even though it is not the fastest language
in terms of its practical running time [58].

As in linear programming branch-and-bound, in Isolating Cut Branch-and-Bound
we must specify two strategies: the variable-selection strategy (line 5, algorithm 2.1) and
the node-selection strategy (line 10, algorithm 2.1).

Branching Variable At each tree node, we must select an unassigned graph vertex, `, to
branch on. Our branching strategy affects the k variables associated with vertex `,
one for each terminal. For this reason, we use “branching variable” and “branching
vertex” interchangeably.

Branching Node After exploring a node in the tree, we must decide which node to explore
next.

Branching Variable Strategy: For choosing the branching vertex, we considered a few
options. The options included choosing a vertex randomly, choosing the vertex farthest from
an existing source set, or choosing the vertex of largest degree. Initial experiments suggested
that the last strategy was best (largest degree), so our results use that strategy. In our
implementation, we contract source sets into a single terminal vertex at each node in the
branch-and-bound tree. This allows subsequent minimum cuts to be evaluated on smaller
graphs.

Branching Node Strategy: For the branching node, we chose the “least bound” heuris-
tic: that is, we always chose the unexplored node with the smallest lower bound, L(d), with
ties broken by fewer unassigned vertices. We considered two other heuristics: choosing the
node with the fewest unassigned vertices and choosing the node with smallest sum (L(d) plus
unassigned vertices). We found that the “least bound” heuristic performed best, in practice.

Comparison to Linear Programming Branch-and-Bound

To compare our algorithm, Isolating Cut Branch-and-Bound, to branch-and-bound
using the linear programming relaxation (relaxation CKR-LP), we used Gurobi, a popular
commercial software package for mixed-integer programming. Strictly speaking, the con-
straint ztij ∈ {0, 1} did not need to be specified, since it is implied. However, we found that
specifying it explicitly helped Gurobi solve instances faster. We suspect this is because the
ztij variables are good variables to branch on. All of Gurobi’s hyper-parameters were set to
their default values. No additional performance tuning was undertaken.

Data Sets

Real Data Sets: The twenty-four real-world data sets we used for experimentation were
gathered from two sources. The first source was the DIMACS Implementation Challenge.
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According to the website, “These real-world graphs are often used as benchmarks in the
graph clustering and community detection communities.” These data sets are available
online at

https://www.cc.gatech.edu/dimacs10/.

The second source was KONECT, an online repository of popular graph datasets. These
data sets are available online at

http://konect.uni-koblenz.de/.

In most of the data sets, the graphs are already connected. In the rest, we only considered
the largest connected component, otherwise the k-terminal cut problem decomposes into
smaller problems on each component.

Simulated Data Sets: To systematically study the running time scaling of Isolating
Cut Branch-and-Bound, we used simulated graphs. It has been observed that many
real-world graphs, from social networks to computer networks to metabolic networks, ex-
hibit both a power-law degree distribution and high clustering [30]. The Power Cluster
model, introduced by Holme and Kim [30], generates random graphs which exhibit both of
these properties. NetworkX includes a tool for randomly generating graphs according to the
Powerlaw Cluster model with three parameters: the number of vertices, the number
of random edges to add for each vertex, and the probability of creating a triangle. In our
scaling experiment, we vary the first parameter (the number of vertices) while leaving the
latter two fixed at 10 and 0.1, respectively.

Terminals: In the data sets, terminals are not specified. In order to find suggested ter-
minals, we do the following: first, we perform spectral clustering on the graph to get an
approximate clustering of the graph into k clusters (by performing k-means clustering on
the spectral embedding of the graph). Next, we choose the largest-degree vertex in each clus-
ter and set those vertices to be our k terminals. By selecting one terminal in each cluster, we
hope to increase our odds of creating k-terminal cut instances with non-trivial solutions.

Results

Properties of Isolating Cut Branch-and-Bound

Before presenting the main comparison, we break down the performance of Isolating Cut
Branch-and-Bound. On the twenty-four real data sets, we report the number of minimum
isolating cuts calculated, as well as the value of the optimal objective. The analysis is
repeated in real graphs with five terminals (table A.1) and with ten terminals (table A.3).
The graphs and method for choosing the terminals were described in section 2.6.

One property of the objective function of k-terminal cut is that it can occasionally
lead to solutions where most of the graph is assigned to one component of the partition.
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Since this is of interest, in addition to reporting the value of the optimal solution we also
report the fraction of the graph which is in the largest partition of the optimal solution.

From this data, it appears that the running time of Isolating Cut Branch-and-
Bound is correlated with the size of the graph and the number of minimum isolating cuts
performed. It does not appear to be correlated with the properties of the optimal solution
we considered.

Comparison to Linear Programming Branch-and-Bound

Next, we compare Isolating Cut Branch-and-Bound to linear programming (LP)
branch-and-bound with Gurobi. We compare on the twenty-four real-world test graphs,
first with five terminals (table A.2) and then with ten terminals (table A.4). Isolating
Cut Branch-and-Bound is faster than LP branch-and-bound on twenty-three of the
twenty-four instances with five terminals and nineteen of the twenty-four instances with ten
terminals. Isolating Cut Branch-and-Bound provides a median speedup of 18× in
instances with 5 terminals and a median speedup of 26× in instances with 10 terminals.

To systematically investigate the scaling of Isolating Cut Branch-and-Bound, we
simulated random instances (as described in section 2.6). Properties of the optimal solution
can be found in table A.5. Running time comparisons can be found in table A.6 and figure
A.1. The running time is the average running time of each algorithm across ten randomly
generated k-terminal cut instances. The error bars in the figure reflect the standard devi-
ation of running time across those instances. In these simulated data sets, Isolating Cut
Branch-and-Bound scales better than LP branch-and-bound to large instances. In simu-
lated instances with 30, 000 edges, Isolating Cut Branch-and-Bound provides a factor
of 3× speedup. In simulated instances with 90, 000 edges, the speedup is a factor of 14×.
We believe that this behavior can largely be attributed to the slow growth in the number
of minimum isolating cuts performed by Isolating Cut Branch-and-Bound. In simu-
lated instances with ∼ 30, 000 edges, Isolating Cut Branch-and-Bound performs 70
minimum isolating cuts on average. In simulated instances with ∼ 90, 000 edges, Isolating
Cut Branch-and-Bound performs only 130 minimum isolating cuts on average.

2.7 Conclusions

In this chapter, we developed two new ways to use isolating cuts to solve the k-terminal
cut problem. First, we introduced Isolating Cut Branch-and-Bound, a new fixed-
parameter tractable branch-and-bound algorithm devised for solving the k-terminal cut

problem. In our empirical study, we found that Isolating Cut Branch-and-Bound is
an order of magnitude faster than linear programming branch-and-bound on twenty-four
real-world benchmark instances. On simulated data, the Isolating Cut Branch-and-
Bound algorithm scales better from small to large instances. Second, we proved that, in
(k − 1)-stable instances of k-terminal cut, the source sets of the minimum isolating cuts
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recover the unique optimal solution to that k-terminal cut instance. As an immediate
corollary, we concluded that, on (k − 1)-stable instances, Isolating Cut Branch-and-
Bound returns the optimal solution after calculating just k minimum cuts. On the other
hand, we constructed (k− 1− ε)-stable instances of k-terminal cut (0 < ε < k− 2) where
the isolating cuts in the root node do not return the optimal solution.
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Chapter 3

Valid Distance Drawings of Signed
Graphs

3.1 Introduction

A signed graph is an undirected graph where each edge has an associated sign, positive or
negative. Kermarrec and Thraves [36] introduced the definition of a valid distance drawing
for signed graphs. A drawing of a signed graph in Rk is an injection of the set of vertices into
Rk. A drawing is said to be valid distance, or simply valid, if, for every vertex, its positive
neighbors are closer than its negative neighbors with respect to the Euclidean distance. The
problem of drawing signed graphs in Rk has received increasing attention in recent years due
to its applications in social networks, such as in opinion formation [50], consensus decision-
making [1], the evolution of beliefs [56], and community detection [12].

Cygan et al. [18] gave a characterization of the set of complete signed graphs with a valid
distance drawing in R1: a complete signed graph, G, has a valid distance drawing in R1 if
and only if its positive subgraph is a proper interval graph. A proper interval graph, also
called a unit interval graph, is an interval graph in which no interval is contained inside
another or, equivalently, in which every interval has unit length. Determining if a graph is
a proper interval graph can be done in linear time [16]. However, for general signed graphs
(not necessarily complete), it was shown that deciding whether or not a graph has a valid
distance drawing in R1 is an NP-complete problem [18]. This result implies that finding the
smallest k such that a given signed graph has a valid distance drawing in Rk is an NP-hard
problem.

Several researchers have designed algorithms that provide meaningful representations of
signed graphs in R2 [59, 60, 61]. These representations do not necessarily satisfy the condition
required for a drawing to be a valid distance drawing, since there are signed graphs without
a valid distance drawing in R2 [36].

The following question remains open: What is the smallest dimension, L(n), such that any
signed graph with n vertices has a valid distance drawing in RL(n)? In this work we provide
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upper and lower bounds on L(n): blog5 (n− 3)c + 1 ≤ L(n) ≤ n − 2. We also determine
exact values for L(n) up to n = 7. In order to prove the upper bound L(n) ≤ n−2, we apply
a result from distance geometry. For the lower bound L(n) ≥ blog5 (n− 3)c + 1, we bound
the size of a graph that has a valid distance drawing with a hypersphere packing problem.

This chapter is organized as follows. In section 3.2, we discuss preliminaries. In section
3.3, we prove that L(n) ≤ n− 2. In section 3.4, we prove that L(n) ≥ blog5 (n− 3)c+ 1. In
section 3.5, we compute exact values for L(n) up to n = 6. In section 3.6, we determine the
exact value for L(7) and an upper bound for L(8) via computational experiments. We offer
some final remarks in section 3.7.

3.2 Preliminaries

We formally define signed graphs and valid distance drawings. We consider only finite,
undirected graphs with no parallel edges and no self-loops. A signed graph is defined as
follows:

Definition 3.1. A signed graph G = (V, (E+, E−)) consists of a set of vertices, V , as well
as two disjoint sets of edges: the positive edges E+ and the negative edges E−.

Given a signed graph G = (V, (E+, E−)), we define positive neighbors and negative neigh-
bors for each vertex in G. Let us define the set of positive neighbors of a vertex v as the
set

N+
v = {u ∈ V : {v, u} ∈ E+}.

Similarly, let us define the set of negative neighbors of vertex v as the set

N−v = {u ∈ V : {v, u} ∈ E−}.

The positive subgraph of a signed graph G = (V, (E+, E−)) is the signed graph G+ =
(V, (E+, ∅)) on the same set of vertices as G but with only the positive edges of G. If a
signed graph is complete, it is sufficient to specify only its positive subgraph. The remaining
edges are negative.

One type of signed graph we will use frequently is the complete signed graph on a + b
nodes where the positive subgraph equals the complete bipartite graph with a nodes on one
side and b nodes on the other side. We define special notation for this graph:

Qa,b = (V, (Ka,b, Ka+b \Ka,b)),

where |V | = a + b, Ka+b is the complete graph on a + b vertices and Ka,b is the complete
bipartite graph between a and b vertices. See figure 3.1 for an illustration of Q2,3.

For a signed graph G = (V, (E+, E−)), let D : V → Rk be an injection of the set of
vertices of G into Rk. We call D a drawing of G in Rk. Moreover, we define the validity of
a drawing as follows:
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v1

v2

w1

w2

w3

Figure 3.1: An example of Qa,b when {a, b} = {2, 3}. The blue edges have positive sign and
the red edges have negative sign.

Definition 3.2 (Valid Distance Drawing). Let G = (V, (E+, E−)) be a signed graph, and let
D be a drawing of G in Rk. We say that D is a valid distance drawing if, ∀v ∈ V, ∀u+ ∈ N+

v ,
and ∀u− ∈ N−v :

d(D(v), D(u+)) < d(D(v), D(u−)), (3.1)

where d(x, y) denotes the Euclidean distance between x, y ∈ Rk.

Definition 3.2 captures the requirement that every vertex is closer to its positive neighbors
than to its negative neighbors. In the case that there exists a valid distance drawing of a
given signed graph G in Rk, we say that G has a valid distance drawing in Rk. Now we
formally define the function L.

Definition 3.3. L(n) is the smallest dimension such that every signed graph on n vertices
has a valid distance drawing in RL(n).

To determine L(n), it is sufficient to consider only complete signed graphs, since a valid
distance drawing of a complete signed graph remains valid when some of its edges are re-
moved.

3.3 Upper Bound on L(n)

In this section, we show that any signed graph on n vertices has a valid distance drawing in
a Euclidean space of dimension n− 2. We rely on a previous result from distance geometry
about drawing polytopes that are close to a simplex [21].

Consider the set of
(
n+1
2

)
positive real numbers {`ij|1 ≤ i < j ≤ n + 1}. Dekster and

Wilker [21] give conditions such that there exists p1, . . . , pn+1 ∈ Rn such that d(pi, pj) =
`ij. Their result can be thought of as a generalization of the triangle inequality to higher
dimensions. They prove that, for some function λ(n), if λ(n) ≤ `ij ≤ 1 for all i, j, then the
set of points p1, . . . , pn+1 necessarily exists. For example, λ(2) = 1

2
.



CHAPTER 3. VALID DISTANCE DRAWINGS OF SIGNED GRAPHS 29

Given a signed graph G on n + 1 vertices and a sufficiently small ε, we can require that
every vertex is exactly at a distance of 1 − ε from its positive neighbors and 1 from its
negative neighbors. As long as λ(n) ≤ 1− ε, this set of edge lengths forms an approximate
simplex which can be injected in Rn with no violation of restriction (3.1). This shows that
any signed graph on n+ 1 vertices has a valid distance drawing in Rn, so L(n) ≤ n− 1.

Using ideas presented in [21], we go a step further and show that any graph on n + 2
vertices has a valid distance drawing in Rn. Thus, L(n) ≤ n− 2.

Theorem 3.1. Let G = (V, (E+, E−)) be a signed graph such that |V | = n + 2. Then, G
has a valid distance drawing in Rn.

Proof. Assume that at least one edge, e, is negative. Otherwise, the existence of a valid
distance drawing is trivial since any drawing will satisfy condition (3.1). Label the vertices
incident to e as vn+1 and vn+2. The rest of the vertices are vertices v1 through vn.

We will draw G such that every positive edge has distance 1− ε and every negative edge
except e has distance 1. To accomplish this, let

D1 : V \ {vn+1} → Rn

be a valid injection of the vertices except vn+1 in which every positive edge has length exactly
1 − ε and every negative edge has length exactly 1. Such a drawing necessarily exists for
sufficiently small ε, by the theorem of [21]. Now, let

D2 : V \ {vn+2} → Rn

by a valid injection of the vertices except vn+2 in which every positive edge has length exactly
1− ε and every negative edge has length exactly 1. The drawings D1 and D2 are congruent
on the vertices v1, . . . , vn. We can thus require that the drawing D2 agrees with D1 on the
vertices v1, . . . , vn. Let H be a hyperplane of dimension n− 1 which passes through vertices
v1, . . . , vn

1. We can further require that D1(vn+2) and D2(vn+1) are on opposite sides of H.
Let D be the drawing which equals D1 and D2 on vertices v1 through vn and D(vn+2) =

D1(vn+2) and D(vn+1) = D2(vn+1). We claim that D is a valid distance drawing. In the
drawing D, every edge except for e had length 1− ε if it is positive and 1 if it is negative. By
construction, the negative edge e has length at least

√
2−O(ε), which is strictly larger than

1 for sufficiently small ε. Thus, the properties of a valid distance drawing are satisfied.

3.4 Lower Bound on L(n)

In this section, we lower bound L(n) by establishing a correspondence between finding valid
drawings and hypersphere packing. In particular, we consider the graph Q2,p(k). We show
that this graph has no valid distance drawing in Rk when p(k) > 5k.

1If ε < 1 − λ(n) (strictly), then the drawings D1 and D2 are “non-degenerate” (to use the terminology
of [21]) and the hyperplane H is unique. This uniqueness of H is not required for our proof.
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Lemma 3.1. The signed graph Q2,p(k) has no valid distance drawing in Rk for p(k) > 5k.

Proof. Assume, for the sake of contradiction, there exists a valid distance drawing of Q2,p(k)

in Rk. Let v1 and v2 denote the two vertices on one side of Q2,p(k) and w1 through wp(k)
denote the vertices on the other side. See figure 3.2 for a helpful illustration.

Without loss of generality, we scale the drawing such that the distance between v1 and
v2 is exactly 1. For every vertex wi, the distance to its farthest positive neighbor is at least
1
2
, since it is connected to both v1 and v2 via a positive edge: max {d(wi, v1), d(wi, v2)} ≥ 1

2
.

This implies that the distance between wi and wj for any j 6= i is strictly larger than 1
2
,

since wi and wj are connected via a negative edge: d(wi, wj) >
1
2
.

As a result, we can draw p(k) balls of radius 1
4
, one around each of the wi, that do not

intersect. The centers of these p(k) balls are inside B(v1, 1), since d(v1, wi) must be less than
d(v1, v2). The balls lie entirely inside B(v1, 1 + 1

4
) because the radius of each ball is 1

4
.

We bound p(k) with a packing problem. When there exists a valid distance drawing,
p(k) is at most the number of balls of radius 1

4
that can be packed into a ball of radius 1 + 1

4
.

The ratio between the volumes of the balls implies that:

p(k) ≤ (1 + 1/4)k

(1/4)k
= 5k.

Thus, when p(k) > 5k, there is no valid distance drawing of Q2,p(k) in Rk.

From lemma 3.1, we see that we need at least k + 1 dimensions to embed every graph
on 5k + 3 vertices. In other words, we need at least blog5 (n− 3)c + 1 dimensions for every
graph on n vertices to have a valid distance drawing. Thus, we have

Theorem 3.2. L(n) ≥ blog5 (n− 3)c+ 1.

It is tempting to try and improve this lower bound using a tighter analysis of the same
construction. While improvement is possible, asymptotic improvement with this construction
is not possible. That is, the lower bound derived for L(n) by tightening this analysis will still
be Θ(log n). To prove this, in lemma 3.2 we will construct a valid distance drawing of Q2,p(k)

exists where p(k) is an exponential function of k. Thus, obtaining a stronger asymptotic
bound on L(n) will require a different construction.

Lemma 3.2. The signed graph Q2,p(k) has a valid distance drawing in Rk for some value
p(k) ≥ 1

4
( 4√

15
)k−2.

Proof. We continue using the notation from lemma 3.1. Let v1 and v2 denote the two vertices
in on one side of Q2,p(k) and let w1 through wp(k) denote the vertices on the other side. We
begin by drawing v1 and v2 in Rk:

D(v1) = (−1

2
, 0, 0, . . . , 0).
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v1 v2

w1

w2

d(v1, v2) = 1

Figure 3.2: The construction used in lemma 3.1 when p(k) = 2. The wi must lie inside the
blue circles, but outside of each other’s red circles.

D(v2) = (
1

2
, 0, 0, . . . , 0).

Thus, d(D(v1), D(v2)) = 1. To ensure that d(D(vi), D(wj)) =
√

1− ε, we will draw each
w1, . . . , wp(k) at a point D(wj) = (xj1, xj2, . . . , xjk) such that

xj1 = 0 & x2j2 + x2j3 + . . .+ x2jk =
3

4
− ε.

Notice that the D(wj) lie on a hypersphere of dimension k − 1 with radius
√

3
4
− ε. A

spherical code is defined as a set of points on a hypersphere such that the angle between
every pair of points is at least θ [31]. Consider what happens when we stipulate that the wj
must have angle θ = cos−1 1

4
between them:

d(D(wi), D(wj)) =

√
(
3

4
− ε) + (

3

4
− ε)− 2(

3

4
− ε)1

4
=

√
9

8
− 3

2
ε.

A drawing constructed this way is valid when ε is sufficiently small:

d(D(wj), D(v1)) = d(D(wj), D(v2)) < d(D(wj), D(wi)) ⇐⇒
√

1− ε <
√

9

8
− 3

2
ε

⇐⇒ ε <
1

4
.
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Jenssen et al. [31] give a lower bound on the size of the largest spherical code in the for
any dimension and angle. In dimension k − 1 with angle θ, it is:

p(k) ≥ (1 + o(1))
√

2π(k − 1)
cos θ

sin(k−2) θ

When θ = cos−1 1
4
, as it is in our construction,

p(k) ≥ 1/4

(
√

15/4)k−2
=

1

4
(

4√
15

)k−2.

3.5 Exact Computation for n ≤ 6

In this section, we calculate the exact values of L(n) for n ≤ 6.

L(1) = 0. A signed graph with only one vertex has a valid distance drawing in R0 because
there is no constraint (3.1) to be satisfied.

L(2) = 1. Again, there is no constraint (3.1) to be satisfied. However, at least two distinct
points are needed for the valid distance drawing to be an injection. Hence, at least
dimension 1 is required.

L(3) = 1. Any signed graph on 3 vertices has a proper interval graph as its positive subgraph.
Hence, every signed graph on 3 vertices has a valid distance drawing in R1.

L(4) = 2. K2,2 is not a proper interval graph. Therefore, Q2,2 does not have a valid distance
drawing in R1. From theorem 3.1, L(4) ≤ 2. Thus, we conclude that L(4) = 2.

L(5) = 3. We again apply theorem 3.1 and the fact that the signed Q2,3 does not have a
valid distance drawing in R2, as was shown in [36].

The remainder of this section is devoted to showing that Q3,3 does not have a valid
distance drawing in R3. Therefore L(6) = 4. First, we present a key lemma. See figure 3.3
for a helpful illustration.

Lemma 3.3. Let C be a disk in R2 defined by a center c and a point p on its border. Let
C1, C2, and C3 be disks in R2 with centers c1, c2, and c3, respectively, such that the following
properties hold:

• ci ∈ C for i = 1, 2, 3.

• c ∈ Ci for i = 1, 2, 3.

• p ∈ Ci for i = 1, 2, 3.
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c

p

c1

c2
c3

C1

C2
C3

C

Figure 3.3: An example of lemma 3.3. The points c1, c2, and c3 are the centers of the dashed
disks C1, C2, and C3. Each of these disks contains points c and p, and their centers lie inside
the disk C. The point c is the center of disk C, and p lies on the boundary of C. The
statement of lemma 3.3 is satisfied since c2 is strictly contained in C1. For this instance, c2
is also contained in C3.

Then, for some i and j in {1, 2, 3} such that i 6= j, ci is strictly inside Cj.

Proof. The disk C is defined as C = {q : d(c, q) ≤ r} ∈ R2, where r = d(c, p). Without loss
of generality, assume C is rotated such that p is its north pole. The line that passes through
c and p divides C in two halves, say the left and right halves.

Let c1, c2, and c3 be the centers of three disks that contain c and p such that ci ∈ C.
By the pigeonhole principle, one half of C contains at least two of them. Without loss of
generality, assume that c1 and c2 are in the left half of C. Let c′1 be the point on the border
of C where C and the ray from c through c1 intersect. Define c′2 analogously. Without loss
of generality, assume that the angle ∠(pcc1) is at least as large as the angle ∠(pcc2). We will
argue that c2 is contained in C1.

Consider the function d(c1, x), where x is a point on the border of C. This function has
a unique minimum value at c′1 and a unique maximum value at the antipodal point (with
respect to C). Between the minimum and maximum values, it is monotonically increasing.
Thus, because p is contained in C1, it follows that all points on the arc between c′1 and p
are strictly contained in C1, including c′2. Finally, since c2 can be expressed as a convex
combination of c and c′2, both of which are inside C1, it follows that c2 is strictly inside
C1.

Theorem 3.3. The signed graph Q3,3 does not have a valid distance drawing in R3.

Proof. Assume, for the sake of contradiction that Q3,3 has a valid distance drawing, D, in
R3. Let v1, v2, v3 ∈ V be the vertices on one side and w1, w2, w3 ∈ V be the vertices on
the other side. Edges of the form {vi, wj} are positive, while edges of the form {vi, vj} and
{wi, wj} are negative.
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Since D is valid, D(w1), D(w2) and D(w3) lie strictly inside all of the three spheres Si, one
for each i ∈ {1, 2, 3}, centered at D(vi) and with radius equal to r−i = minj 6=i d(D(vi), D(vj)).
By construction, none of the Si strictly contain D(vj) for j 6= i. Furthermore, D(v1), D(v2)
and D(v3) cannot be collinear, otherwise the interior of the intersection of the Si is empty.
Let Hv be the plane defined by D(v1), D(v2) and D(v3).

By the pigeonhole principle, at least two D(wi) lie in the same side of Hv. Without
loss of generality, assume that D(w1) and D(w2) are in the same closed half-space defined
by Hv and that D(w1) is at least as far from Hv as D(w2). Let c and p, respectively, be
the projections of D(w1) and D(w2) onto Hv. Let Ci = Si ∩ Hv. We will show that our
construction of c, p, C1, C2, C3 satisfies the conditions of lemma 3.3.

First, we will show that c and p are inside Ci for i = 1, 2, 3. The following two inequalities
are from the properties of projections and from the property of valid distance drawings:

d(c,D(vi)) ≤ d(D(wj), D(vi)) < r−i .

The same argument applies for p in place of c.
Now, let S be the sphere with radius r+ = maxi d(D(vi), D(w1)) centered at D(w1).

Because w2 and w1 are negative neighbors, D(w2) must lie outside S.
Consider the intersection S ∩ Hv. By construction, S ∩ Hv contains all the D(vi) for

i = 1, 2, 3. However, since D(w2) is at least as close to Hv as D(w1), p is not contained in
S ∩Hv.

Let C be the disk centered at c which exactly passes through p. By the argument in the
previous paragraph, C contains S ∩Hv and thus contains D(vi) for i = 1, 2, 3.

Notice that we have satisfied all the conditions of lemma 3.3. Thus, one of the Ci must
strictly contain the center of another Cj. This contradicts the validity of D, completing the
proof.

3.6 Computational Experiments

In this section, we will devise an algorithm, Valid Drawing, for finding valid distance
drawings of a given signed graph. The inputs to Valid Drawing are a signed graph G and
a dimension k. The output is either a valid distance drawing of G or ∅ if no valid distance
drawing was found.

For small n, we can then upper bound L(n) with a brute-force search over all signed
graphs on n vertices. We only need to check the complete signed graphs on n vertices. The
number of such graphs equals the number of distinct graphs on n vertices, up to isomorphism
(Online Encyclopedia of Integer Sequences, sequence A000088 [57]).

For a given signed graph G = (V, (E+, E−)), consider the problem of finding a valid
distance drawing D : V → Rk. Due to the non-convex nature of the constraint (3.1), it
is difficult to formulate this problem as an optimization problem with convex constraints.
Instead, we formulate the problem as an unconstrained optimization problem with a non-
convex objective function.
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Consider the following optimization problem:

min
xvi

∑
vi∈V

max

(
max

vj∈N+(vi)
d(xvi ,xvj)− min

vj∈N−(vi)
d(xvi ,xvj) + 1, 0

)
, (3.2)

where xvi = D(vi) for vi ∈ V . The term maxvj∈N+(vi) d(xvi ,xvj) is the distance to the
farthest positive neighbor of vertex vj. The term minvj∈N−(vi) d(xvi ,xvj) is the distance to
the closest negative neighbor of vertex vi. The 1 inside the outer maximization may be
confusing at first glance. Recall that constraint (3.1) is a strict inequality. The 1 exists to
ensure that there is a slack of at least 1 in this constraint.

Lemma 3.4. Given a signed graph G, the optimal objective value for optimization problem
(3.2) is 0 if and only if G has a valid distance drawing in Rk.

Proof. If there exists a valid distance drawing of G, then there exists a scaling of the valid
distance drawing with slack at least 1 on each constraint (3.1). This scaled drawing is a
feasible solution to (3.2) where each term in the summation over V has a value of 0. On the
other hand, if there is a feasible solution with value 0 then every constraint (3.1) has slack
of at least 1. Ergo, the drawing is a valid distance drawing.

For a given signed graph G, we attempt to find a valid distance drawing into Rk with
the Valid Drawing algorithm (algorithm 3.1). The algorithm works by performing gra-
dient descent on the objective function (3.2). First, the injection xvi of each vertex i ∈
V is initialized as a k-dimension random vector, drawn from a uniform distribution on
[−
√

3/(n× k),
√

3/(n× k)]k. At each iteration, we evaluate the objective function (3.2) to
check if it is 0. If it is, then we have identified a valid distance drawing. Otherwise, the
injection is updated by taking a step of gradient descent. This process is repeated until a
valid distance drawing is identified or the maximum number of iterations, niter, is reached.

The specific variant of gradient descent that we used was Adam [39]. Adam is a popular
gradient descent algorithm. Rather than maintaining a single learning rate, Adam calculates
a separate learning rate for each parameter. Adam also combines the gradient with a
“momentum” term, which is a weighted average of the gradients calculated in previous
steps. We set the parameters for Adam to their default values. In our experiments, we set
niter = 1000. Our code is available at

https://github.com/marvel2010/signed-graph-valid-drawing.

Unfortunately, our approach has limitations. Our objective function (3.2) is not convex,
so Adam is not guaranteed to converge to an optimal solution. Thus, if we do not find a
feasible solution with objective value 0 within the allotted iterations, we cannot know if no
such feasible solution exists or if we were unable to find it. In some applications of gradient
descent, when the improvement in the objective function is sufficiently small it is assumed a
local minimum has been found and, to save time, the gradient descent is terminated. In our
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Algorithm 3.1 Valid Drawing

Input: G = (V, (E+, E−)): the signed graph we wish to inject.
Input: k: the dimension of Euclidean space to inject the signed graph.
Input: niter: the maximum number of iterations.
Output: (xv1 , xv2 , . . . , xvn): a valid distance drawing or ∅ if none found.

1: n← |V |

2: xvi ← Random vector selected uniformly in
[
−
√

3
n×k ,

√
3

n×k

]k
∀vi ∈ V

3: x← (xv1 , xv2 , . . . , xvn)
4: f(x)←

∑
vi∈V max

(
maxvj∈N+(vi) d(xvi , xvj)−minvj∈N−(vi) d(xvi , xvj) + 1, 0

)
5: for t = 1, . . . , niter do
6: if f(x) = 0 then
7: return x . Valid distance drawing found.
8: else
9: x← Adam(x) . Update the drawing with a step of gradient descent.

10: end if
11: end for
12: return ∅ . No valid distance drawing found.

Table 3.1: Known bounds on L(n)

Number of vertices 1 2 3 4 5 6 7 8

Upper bound 0 1 1 2 3 4 4 5
Lower bound 0 1 1 2 3 4 4 4

case, we only care whether the optimal objective value is 0, so there is no benefit to stopping
early when the objective value is greater than 0.

Using Valid Drawing, we were able to find a valid distance drawing in R4 for every
signed graph with 7 vertices. Combining this with the result that L(6) = 4 from the previous
section, we conclude that L(7) = 4.

We also identified a valid distance drawing for almost all complete signed graphs with
8 vertices in R4. The only three signed graphs for which we did not find a valid distance
drawing in R4 were the signed K8 with positive subgraphs K3,5, K4,4, or K4,4 with one
edge removed. We were unable to draw these three graphs in R4 even after running Valid
Drawing hundreds of times and setting niter = 100000. All signed graphs on 8 vertices have
a valid distance drawing in R5, showing that L(8) ≤ 5.
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Table 3.2: Upper bounds on the smallest dimension such that Qn
2
,n
2

has a valid distance
drawing.

Number of vertices n 2 4 6 8 10 12 14 16 18 20 22 24

Upper bound for L(Kn
2
,n
2
) 1 2 4 5 7 8 10 11 13 14 16 17

3.7 Final Remarks

Our results are summarized in table 3.1. Determining an exact formula for L(n) in general
remains an open problem. Based on our computational experiments, and the bounds on
L(n) for n ≤ 7, we state the following conjecture:

Conjecture 3.1. L(n) is the smallest dimension such that Qbn
2
c,dn

2
e (the signed Kn with

positive subgraph Kbn
2
c,dn

2
e) has a valid distance drawing.

In other words, we conjecture that Qbn
2
c,dn

2
e is the most difficult graph to inject.

Motivated by our own conjecture, we used Valid Drawing to draw Qn
2
,n
2

for even values
of n from 8 to 24. Our results are presented in table 3.2. All the values we obtained for the
upper bounds fit the formula b (3n−1)

4
c, leading to our final conjecture about the asymptotic

behavior of L(n).

Conjecture 3.2. L(n) ∼ 3
4
n.



38

Chapter 4

Maximum Online Perfect Bipartite
Matching with i.i.d. Arrivals

4.1 Introduction

In this chapter, we consider the problem of maximum online perfect bipartite matching.
Suppose that we have a set of jobs and a set of workers. At every time step, a single job
arrives to be served by one of the workers. Upon a job’s arrival, we observe the utility of
assigning that job to each of the workers. We must immediately decide which worker will
serve the job. Once a worker is assigned a job, the worker is unavailable and cannot be
assigned to another job. Jobs continue to arrive until no workers are available.

It is natural to model this problem setup as a bipartite graph, where there is an edge
between each worker and job. The weight of the edge between a job and a worker equals the
non-negative utility of assigning that worker to that job. Once a number of jobs arrives equal
to the number of workers, the assignment of workers to jobs will form a perfect matching
in this bipartite graph. Our goal is to design a dispatching algorithm that maximizes the
expected sum of utilities of the perfect matching.

In this work, we consider the maximum online perfect bipartite matching problem with
independent and identically distributed (i.i.d.) arrivals. This means that, at each time step,
a job is drawn i.i.d. from a known distribution over job types.

We introduce two classes of algorithms for the problem of online perfect bipartite match-
ing with i.i.d. arrivals, which we call flow-guided algorithms and evaluation-guided algo-
rithms. Several of the algorithms are 1

2
-competitive: the total expected utility of the perfect

matching produced by the algorithm is at least half of the total expected utility of an optimal
offline algorithm that knows the job arrival sequence in advance. We also describe a family
of problem instances for which 1

2
is the best-possible competitive ratio. In contrast, the same

problem with adversarial job arrivals cannot be bounded, as observed by Feldman et al. [22].
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Related Work

Our work resides in the space of online matching problems. We review several variants of
online matching, including the maximum online bipartite matching problem (not necessarily
perfect) and the minimum online perfect bipartite matching problem. We also review the
closely-related k-server problem. For each of these problems, several arrival models are
considered. Arrival models including adversarial, where the adversary chooses jobs and their
arrival order; random order, where the adversary chooses jobs but not their arrival order;
and i.i.d., where the adversary specifies a probability distribution over job types and each
arrival is sampled independently from the distribution. We briefly describe each of these
problems and present best-known results, contrasting it to the setting considered here. A
summary is provided in table 4.1.

Maximum Online Bipartite Matching

The maximum online bipartite matching problem (not necessarily perfect) is defined on a
bipartite graph with n known workers and n jobs that arrive one at a time. Jobs either get
assigned to a worker or are discarded. The goal is to maximize the cardinality (or sum of
weights) of the resulting matching. In contrast to our problem, jobs may be the discarded
and the resulting matching may be imperfect.

For the unweighted problem with adversarial arrivals, Karp, Vazirani, and Vazirani [34]
showed a best-possible algorithm that achieves a competitive ratio of 1 − 1

e
≈ 0.632. Vari-

ations of the problem have been proposed: addition of edge or vertex weights, the use of
budgets, different arrival models, etc. Mehta et al. [48] provide an excellent overview of this
literature. When the arrivals are in a random order, it is possible to do better than 1 − 1

e
.

Mahdian and Yan [42], in 2011, achieved a competitive ratio of 0.696. Manshadi, Gharan,
and Saberi [46] showed that you cannot do better than 0.823. If the problem also has weights,
then the best-possible competitive ratio is 0.368 by a reduction from the secretary problem
as shown by Kesselheim et al. [37]. They also give an algorithm that attains this competitive
ratio.

The problem has also been studied when the jobs are drawn i.i.d. from a known distribu-
tion. This problem is also referred to as online stochastic matching. The first result to break
the 1 − 1

e
barrier for the unweighted case was the 0.67-competitive algorithm of Feldman

et al. [23] in 2009. To date, the best-known competitive ratio of 0.730 is due to Brubach
et al. [8]. This is close the best-known bound of 0.745 by Correa et al. [17].

Minimum Online Perfect Bipartite Matching

The minimum online perfect bipartite matching addresses the question of finding a minimum
cost perfect matching on a bipartite graph with n workers and n jobs. Given any arbitrary
sequence of jobs arriving one by one, each job needs to be irrevocably assigned to worker on
arrival. This problem is the minimization version of the problem considered in this work.
However, the obtained competitive ratios do not transfer.
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The problem was first considered by Khuller, Mitchell, and Vazirani [38] and indepen-
dently by Kalyanasundaram and Pruhs [32]. If the weights are arbitrary, then the competitive
ratio cannot be bounded. To address this, both papers considered the restriction where the
edge weights are distances in some metric on the set of vertices. They give a 2n− 1 compet-
itive algorithm, which is the best-possible for deterministic algorithms. When randomized
algorithms are allowed, the best-known competitive ratio is O(log2(n)) by Bansal et al. [4].

It is possible to attain better competitive ratios when the arrival model is restrict. If
the arrival order is also randomized, then Raghvendra [52] shows that a competitive ratio
of 2 log (n) is attainable. He also shows that this is the best possible. If the arrivals are
drawn i.i.d. from a known distribution, then Gupta et al. [27] present an algorithm with
competitive ratio O((log log log n)2). In fact, the setting studied by Gupta et al. is exactly
the minimization version of the setting we study in this chapter.

k-Server Problem

In the k-server problem, k workers are distributed at initial positions in a metric space. Jobs
are elements of the same metric space and arrive one at a time. When a job arrives, it must
be assigned to a worker which moves to the job’s location. The goal in the k-server problem
is to minimize the total distance traveled by all workers to serve the sequence of jobs. After
an assignment, the worker remains available for assignment to new jobs. This reassignment
distinguishes the k-server problem from ours, where workers are fixed to a job once assigned.

The k-server problem was introduced by Manasse, McGeoch, and Sleator [44]. A review of
the k-server problem literature was written by Koutsoupias [40]. For randomized algorithms
in discrete metrics, the competitive ratio O(log2 (k) log (n)) was attained by Bubeck et al. [9],
where n is the number of points in the discrete metric space. On the other hand, Ω(log (k))
is a known lower bound. In the i.i.d. setting, Dehghani et al. [20] consider a different kind of
competitive ratio: they give an online algorithm with a cost no worse than O(log (n)) times
the cost of the optimal online algorithm.

Structure of this Chapter

This chapter is organized as follows. Section 4.2 formally introduces the problem of maximum
online perfect bipartite matching with i.i.d. arrivals and defines the concept of competitive
ratio. Section 4.3 introduces a family of instances for which no online algorithm performs
better than 1

2
in terms of competitive ratio. In section 4.4 we introduce the class of flow-

guided algorithms and in section 4.5 we introduce the class of evaluation-guided algorithms.
In section 4.6, we present a comparison of all the algorithms introduced in this chapter,
combining theoretical and empirical results. We conclude in section 4.7.
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Table 4.1: Best-known competitive ratios and impossibility bounds for various online bipar-
tite matching problems. F: Results presented in this chapter.

Sense Discarding Arrivals Restrictions Best Known Best Possible

Max Allowed Advers. 0/1 0.632 [34] 0.632 [34]
Max Allowed Rand. Ord. 0/1 0.696 [42] 0.823 [46]
Max Allowed Rand. Ord. None 0.368 [37] 0.368 [37]
Max Allowed i.i.d. None 0.730 [8] 0.745 [17]
Min No Advers. Metric O(log2(n)) [4] Ω(log(n)) [49]
Min No Rand. Ord. Metric 2 log (n) [52] 2 log (n) [52]
Min No i.i.d. Metric O((log log log n)2) [27] Ω(1)
Max No Adversarial None 0 0 [22]

Max No i.i.d. None 1
2

F 1
2

F

4.2 Preliminaries

The set of workers is denoted by W , with size |W | = n. The set J denotes the set of job
types, with size |J | = k. For every worker w ∈ W and job type j ∈ J there is a utility
of uwj ≥ 0 for assigning a job of type j to worker w. Let D(J) be a known probability
distribution over the job types.

At every time step, t = 1, . . . , n, a single job is drawn i.i.d. from J according to D. Let pj
denote the probability that job type j arrives, so npj is the expected number of jobs of type
j that arrive. The job must be irrevocably assigned to a worker before the next job arrives.
Workers are no longer available after they have been assigned a job. After n steps, each
worker is assigned to exactly one job and the resulting assignment forms a perfect matching.
Our goal is to design a algorithm such that the expected sum of the utilities of the resulting
perfect matching is as high as possible.

Throughout this work, we will repeatedly refer two bipartite graphs; the expectation graph
G and the realization graph Ĝ. See figure 4.1 for an example. The expectation graph G is a
complete bipartite graph defined over the set of workers W and the set of job types J . Every
pair {w, j} has associated utility uwj ≥ 0. U = {uwj∀w ∈ W, j ∈ J} is the set of edges of the
expectation graph. Each job type is assigned a weight equal to pjn, the expected number of

arrivals of that job type over n time steps. The realization graph Ĝ is the random bipartite
graph obtained after all n jobs have arrived. On one side of Ĝ is W . On the other side is
Ĵ , the set of n jobs that arrived. We use ĵt ∈ Ĵ to denote the job that arrives at time t and
jt ∈ J to denote the job type of job ĵt. Ĝ is a complete bipartite graph defined over W and
Ĵ . Every edge {w, ĵ} has utility uwj, where j is the job type of job ĵ. It is important to
remember that the expectation graph G is deterministic and known in advance, whereas the
realization graph Ĝ is a random graph representing a realization of the job arrival process
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(a) An expectation graph with 4 workers and
3 job types. On one side, the workers. On
the other side, the job types. In this exam-
ple, p1 = 1

2 and p3 = 1
5 .
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(b) A realization graph in which 2 workers
of type 2 where sampled, then 1 worker of
type 1, then 1 worker of type 3. The bold
edges represent a greedy assignment of jobs
to workers.

Figure 4.1: An expectation graph and realization graph on an instance where |W | = 4 and
|J | = 3.

and is revealed over time.
An instance of the maximum online perfect bipartite matching problem with i.i.d. arrivals

is defined by the set of workers W , the job types J , a set of utilities U , and a distribution
over the job types D(J). Equivalently, the expectation graph G and the distribution D(J)
defines an instance of this problem.

Given an algorithm ALG (potentially randomized) that returns a perfect matching M̂

on Ĝ, we would like to assess the expected performance of the algorithm. We do this in
two steps: first we take the expectation over the internal randomness of the algorithm and
second we take the expectation over samples of the realization graph Ĝ from the expectation
graph G. Throughout this chapter, we will always use curly letters to refer to algorithms
(for example, ALG) and block letters to refer to their expected performance (for example,
ALG).

The performance of an algorithm ALG for a single realization Ĝ, the bipartite graph over
W and Ĵ , is given by:

ALG(W, Ĵ) = EALG

 ∑
w∈W,ĵ∈Ĵ

uwĵIwĵ

 ,
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where Iwĵ is a random indicator variable that equals 1 if ALG assigned the job ĵ to worker

w (that is, {w, ĵ} ∈ M̂) and equals 0 otherwise. The expectation is taken over the random
choices that the algorithm makes, if any.

For a given problem instance defined by expectation graph G and distribution D(J),

ALG(W,J) = EĴ∼D(J)
[
ALG(W, Ĵ)

]
measures the algorithm’s expected performance over samples of Ĵ from D(J).

Remark 4.1. Technically, the performance of an algorithm ALG should always be written
in terms of four parameters: W , the set of workers; J , the set of job types; U the set
of utilities between workers and job types (equivalently, edges in the bipartite expectation
graph); and D(J), the distribution over job types. However, writing ALG(W,J, U,D(J))
and ALG(W,J, U,D(J)) is cumbersome. For that reason, throughout this chapter we write
ALG(W,J) when referring to an algorithm and ALG(W,J) when referring to its expected
performance, assuming that we are also given U and D(J).

As an example, consider the algorithmRAND(W,J). When a job arrives,RAND(W,J)
selects a worker uniformly at random and assigns the job that arrived to that worker. We
calculate its expected performance:

RAND(W,J) = ERAND

EĴ∼D(J)
 ∑
w∈W,ĵ∈Ĵ

uwĵIwĵ


= EĴ∼D(J)

 ∑
w∈W,ĵ∈Ĵ

uwĵERAND
[
Iwĵ
]

= EĴ∼D(J)

 ∑
w∈W,ĵ∈Ĵ

uwĵ
1

n


=
∑
w∈W

EĴ∼D(J)

∑
ĵ∈Ĵ

uwĵ
1

n


=

∑
w∈W,j∈J

pjnuwj
1

n

=
∑

w∈W,j∈J

uwjpj.

The worst-case performance across instances is measured by the competitive ratio. Let
OPT -OFF(W, Ĵ) be the maximum weight perfect matching in the realization graph Ĝ and
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let OPT-OFF(W, Ĵ) be its weight. Consider

OPT-OFF(W,J) = EĴ∼D(J)
[
OPT-OFF(W, Ĵ)

]
.

OPT-OFF(W,J) measures the expected performance of an optimal offline algorithm, which
is given full information about the arrival sequence in advance. The ratio

ALG(W,J)

OPT-OFF(W,J)

measures the excepted performance of ALG relative to the optimal offline algorithm for a
given instance of the problem. The competitive ratio is the worst-case, i.e. lowest, ratio
among all possible instances of the expectation graph G = (W ∪ J, U) and distributions
D(J):

Definition 4.1 (Competitive Ratio). An algorithm, ALG, is said to have a competitive ratio

of α when α is the infimum, over all instances (W,J, U,D(J)), of ALG(W,J,U,D(J))
OPT-OFF(W,J,U,D(J)) . Using

our shorthand for referring to instances (see remark 4.1),

α = inf
W,J,U,D(J)

ALG(W,J)

OPT-OFF(W,J)
.

4.3 Best-Possible Competitive Ratio

We present here a family of instances for which no online algorithm attains a competitive
ratio more than 1

2
.

Theorem 4.1. For the online perfect bipartite matching problem with i.i.d. arrivals, no
online algorithm can achieve a competitive ratio better than 1

2
.

Proof. Consider an expectation graph G with |J | = k = n+ 1. Let the job types be indexed
from 0 to n and the workers from 1 to n. Job types 1 to n each arrive with probability 1

n2

and job type 0 arrives with probability n−1
n

. For this graph, we set uwj = 1 if w = j and to
0 otherwise. See figure 4.2 for an illustration.

The value of OPT-OFF(W, Ĵ) equals the number of unique job type in {1, . . . , n} that
arrives. The probability that a given job type never arrives is

(1− 1

n2
)n.

Thus, the probability that at least one job of that job type arrives is

1− (1− 1

n2
)n.
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Figure 4.2: Expectation graph G used in the proof of theorem 4.1. Edges in black have a
utility of 1 and edges in gray have a utility of 0.

By linearity of expectation,

OPT-OFF(W,J) = EĴ∼D(J)
[
OPT-OFF(W, Ĵ)

]
= n

(
1−

(
1− 1

n2

)n)
.

For any online algorithm ALG, t − 1 workers are no longer available at time step t
regardless of the strategy. Thus, with probability n−1

n
+ 1

n
t−1
n

the utility attained at time

step t is 0. With probability 1
n
n−(t−1)

n
, it is 1. The total expected utility obtained by ALG

is:

EĴ∼D(J)
[
ALG(W, Ĵ)

]
=

1

n

(
n

n
+
n− 1

n
+
n− 2

n
+ · · ·+ 1

n

)
=

1

2

1

n
(n+ 1)

We compute the relevant ratio

ALG(W,J)

OPT-OFF(W,J)
=

EĴ∼D(J)
[
ALG(W, Ĵ)

]
EĴ∼D(J)

[
OPT-OFF(W, Ĵ)

] =
1
2
1
n
(n+ 1)

n
(
1−

(
1− 1

n2

)n)
We take the limit as n goes to infinity:

lim
n→∞

1
2
(n+ 1)

n2
(
1−

(
1− 1

n2

)n) =
1

2
.

4.4 Flow-Guided Algorithms

In this section, we will introduce the general class of flow-guided algorithms. The idea is
that, at each time step, the assignment of worker is guided by a feasible solution to an offline
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transportation problem between the remaining available workers and J . When a job of type
j arrives, the probability of selecting worker w is proportional to the flow from w to j.

First, some additional notation. Let the random variable WA
t represent the worker as-

signed for the job arriving at time t. Furthermore, let the random set AW t consist of the
available workers when the job at time t arrives. Note that |AW t| = n− (t− 1).

We will show two important results. First, we will define an update rule which we call
uniform redistribution. If we use the uniform redistribution update rule, then the expected
performance of a flow-guided algorithm can be written in a succinct closed form and com-
puted efficiently. We show that an algorithm previously proposed by Chang et al. [13],
DISPAT CH, is optimal among all flow-guided algorithms that use the uniform redistribu-
tion update rule. Second, we argue that there is a singular algorithm, OPT -FLOW , which
is the optimal flow-guided algorithm. In OPT -FLOW , we update the flow at each step to
be the optimal solution to the offline transportation problem between AW t and J .

Offline Transportation Problem

In expectation, pjn jobs of job type j ∈ J will arrive in the realization graph Ĝ. We will
consider a transportation problem on the expectation graph G, where each job type has a
demand of pjn and each worker has a supply of 1.

Formally, let fwj ≥ 0 be the flow from worker w ∈ W to job type j ∈ J . We define the
transportation problem T PP(W,J) and we let TPP(W,J) denote the value of the optimal
solution. See figure 4.3 for an example. As before, we use W and J as parameters, assuming
that U and D(J) are implied (see remark 4.1):

TPP(W,J) = max
∑
w∈W

∑
j∈J

uwjfwj, (T PP(W,J))∑
w∈W

fwj = pjn ∀j ∈ J. (4.1)∑
j∈J

fwj = 1 ∀w ∈ W. (4.2)

Let f ∗wj(W,J) be the value of the optimal flow from w to j in T PP(W,J). When the instance
is clear from context, we omit the W and J and write f ∗wj.

We claim that OPT-OFF(W,J) ≤ TPP(W,J). The reason is that the weighted average

of the perfect matchings OPT -OFF(W, Ĵ) forms a feasible solution to the transportation
problem T PP(W,J).

Lemma 4.1. For any instance (W,J, U,D(J)),

OPT-OFF(W,J) ≤ TPP(W,J).

Proof. Assign each edge in G = (W∪J, U) an indicator variable Iwj, which takes on the value

1 if OPT -OFF(W,J) assigns worker w to a job of type j in Ĝ and 0 otherwise. We claim



CHAPTER 4. MAXIMUM ONLINE PERFECT BIPARTITE MATCHING WITH
I.I.D. ARRIVALS 47

w1

w2

w3

w4

w5

(1)

(1)

(1)

(1)

(1)

1

2

3

(2.5)

(1.5)

(1)

1

1

1

0.5

0.5

0.5

0.5

Figure 4.3: Example of a feasible solution to T PP(W,J) on an instance where |W | = 5,
|J | = 3, and (p1, p2, p3) = ( 5

10
, 3
10
, 2
10

). The value of this feasible solution is TPP(W,J) =
u11 + u21 + 0.5u41 + u32 + 0.5u52 + 0.5u43 + 0.5u53.

that E [Iwj] forms a feasible solution to the transportation problem T PP(W,J). Indeed,∑
w∈W

E [Iwj] = E

[∑
w∈W

Iwj

]
= pjn,

∑
j∈J

E [Iwj] = E

[∑
j∈J

Iwj

]
= 1.

Since E [Iwj] is feasible for T PP(W,J), it has objective at most TPP(W,J):

OPT-OFF(W,J) = E

[ ∑
w∈W,j∈J

uwjIwj

]
=

∑
w∈W,j∈J

uwjE [Iwj] ≤ TPP(W,J).

General Template for Flow-Guided Algorithms

Algorithm 4.1 gives the generic outline for all flow-guided algorithms. The flow at step t,
f twj ≥ 0, is a feasible solution to the offline transportation problem T PP(AW t, J). Recall
that |AW t| = n− (t− 1), so constraint 4.1 becomes∑

w∈AW t

f twj = pj(n− (t− 1))∀j ∈ J. (4.3)
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In algorithm 4.1, we see that in order to fully specify a flow-guided algorithm, we need to
specify how it initializes the offline solution (line 3) and how it updates the offline solution
(line 9).

Algorithm 4.1 Template for Flow-Guided Algorithms

Input: W , J , U , D(J): the set of workers, set of job types, set of utilities, and distribution
over job types.

Output: M̂ : a perfect matching between W and Ĵ .
1: M̂ ← ∅.
2: AW 1 ← W .
3: Initialize Offline Solution: f 1

wj feasible for T PP(AW 1, J)
4: for t = 1, . . . , n do
5: ĵt arrives (type: jt ∈ J).

6: select assigned worker wAt proportional to
f twjt∑

w′∈AWt
f t
w′jt

7: M̂ ← M̂ ∪ [wAt , ĵt]
8: AW t+1 ← AW t \ {wAt }
9: Update Offline Solution: f t+1

wj feasible for T PP(AW t+1, J)
10: end for
11: return M̂

All flow-guided algorithms have an important property in common. At each time step,
the assigned worker, WA

t , is selected uniformly at random from the set of available workers,
AW t. Thus, the order in which workers are assigned can be viewed as a random permutation
of the workers, selected uniformly at random from all n! possible permutations. We prove
this in the following lemma.

Lemma 4.2. In any flow-guided algorithm, at each time step t the assigned worker WA
t is

drawn uniformly from the available workers:

P
(
WA
t = w|w ∈ AWt

)
=

1

|AW t|
.

Proof. The probability that worker w is the assigned worker at time t can be calculated by
summing over all the job types and calculating the probability that job type is selected times
the conditional probability that worker w is selected. See figure 4.4 for a helpful example.

P
(
WA
t = w|w ∈ AW t

)
=
∑
j∈J

P
(
WA
t = w|w ∈ AW t, jt = j

)
P (jt = j)

The probability that a job of type j is selected at step t is pj. The conditional probability
of selecting worker w is given by the flow (algorithm 4.1, line 6).

=
∑
j∈J

f twj∑
w′∈AW t

f tw′j
pj
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Figure 4.4: An illustration of lemma 4.2 when there are 5 workers available. There are two
ways in which worker 4 can be selected. Either a job of type 1 arrives and then worker 4 is
selected or a job of type 3 arrives and then worker 4 is selected.

By the stipulation that the flows must sum to |AW t|pj at each job type (constraint 4.1),

=
∑
j∈J

f twj
|AW t|pj

pj

=
1

|AW t|
∑
j∈J

f twj

By the stipulation that the flows must sum to 1 at each worker (constraint 4.2),

=
1

|AW t|
.

Updating by Uniform Redistribution

Up to this point, we have proved a property that all flow-guided algorithms have in common
(lemma 4.2), regardless of their initialization rule (algorithm 4.1, line 3) and their update
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rule (algorithm 4.1, line 9). In this subsection, we will consider only flow-guided algorithms
that use a specific update rule, which we call the “uniform redistribution” update rule. We
will show that flow-guided algorithms that use the uniform redistribution update rule have
the extraordinary property that their expected performance can be easily calculated from
the initial flow.

Let wAt be the worker assigned at time step t. We call the following rule for updating the
feasible guiding flow uniform redistribution:

f t+1
wj =

{
|AW t+1|
|AW t| (f twj + 1

|AW t+1|f
t
wAt j

) w ∈ AW t+1

0 w /∈ AW t+1.
(4.4)

In words, we take the flow which was assigned to the worker wAt and reassign it uniformly to
the remaining |AW t+1| available workers. We then re-scale such that the flow satisfies the
feasibility conditions. For an example, see figure 4.5.

We claim that the uniform redistribution updating rules is a valid updating rule, in the
sense that, at each step t, the flow is a valid feasible solution to the offline transportation
problem T PP(AW t, J).

Lemma 4.3. For the uniform redistribution updating rule, specified in equation 4.4, if the
initial flow f 1

wj is feasible for the transportation problem T PP(W,J), then the flow at time
t, f twj, is feasible for the transportation problem T PP(AW t, J).

Proof. We proceed by induction on t. The base case, t = 1, is assumed. Now, assume that
the feasibility conditions are satisfied up to t. Then, for t+ 1,∑

j∈J

f t+1
wj =

n− t
n− (t− 1)

(
∑
j∈J

f twj +
1

n− t
∑
j∈J

f twAt j
)

=
n− t

n− (t− 1)
(1 +

1

n− t
)

= 1.

Thus, constraint 4.2 is satisfied. Likewise,

∑
w∈AW t+1

f t+1
wj =

n− t
n− (t− 1)

 ∑
w∈AW t+1

f twj +
1

n− t
∑

w∈AW t+1

f twAt j


Since AW t+1 = AW t \ {wAt },

=
n− t

n− (t− 1)

(
((n− (t− 1))pj − f twAt j) +

1

n− t
(n− t)f twAt j

)
= (n− t)pj.

Thus, constraint 4.3 is satisfied. This completes the induction.
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(a) The expectation graph for an instance
with 4 workers and 3 job types. The arrival
probabilities are (p1, p2, p3) = (12 ,

1
4 ,

1
4). The

flows are an example of a feasible solution to
the transportation problem T PP(W,J). In
this example, we will assume that a job of
type 1 arrives and worker 1 is assigned.
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(b) After the assignment, we re-scale the flow
by 3

4 (since there were 4 workers and now
there are 3) and then re-assign the flow that
went from worker 1 to job type 1. The flow is
reassigned to workers 2, 3, and 4. Notice that
the node weights on the right have decreased,
since there are fewer workers.

Figure 4.5: An example of the uniform redistribution update rule, before and after.

Now we state and prove an exact formula for the expected performance of any flow-guided
algorithm with the uniform redistribution updating rule.

Theorem 4.2. For the maximum online perfect bipartite matching problem with i.i.d. ar-
rivals, the expected performance of any flow-guided algorithm ALG(W,J) that uses the uni-
form redistribution update rule (equation 4.4) is

ALG(W,J) =
1

2

∑
w∈W

∑
j∈J

uwjf
1
wj +

1

2

∑
w∈W

∑
j∈J

uwjpj. (4.5)

Proof. We proceed by induction on the number of workers.
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First, the base case. When |W | = 1, f 1
wj = pj is the only feasible solution to the

transportation problem T PP(W,J). Let w be the lone worker. The expected performance
of the flow-guided algorithm is

∑
j∈J uwjpj. This concludes the base case.

Assume the claim holds for |W | = n−1. We will show it for |W | = n. The expected utility
in just the first time step equals exactly 1

n

∑
w∈W,j∈J uwjf

1
wj. In addition, each available worker

has a 1
n

chance of being selected as the assigned worker (lemma 4.2). Let ALG(W,w, J) be
the expected performance of ALG(W,J) from the point where the set of available workers
is W \ {w} onward. Thanks to the linearity of expectation, we can write the expected
performance of ALG(W,J) as

ALG(W,J) =
1

n

∑
w∈W

∑
j∈J

uwjf
1
wj +

1

n

∑
w∈W

ALG(W,w, J).

ALG(W,w, J) is also a flow-guided algorithm that uses the uniform redistribution update
rule and starts with one fewer worker than ALG(W,J). The initial flow in ALG(W,w, J) can
be expressed in terms of the initial flow inALG(W,J) after one step of uniform redistribution.
Assuming the inductive hypothesis, we can expand ALG(W,w, J), substituting the formula
for the uniformly redistributed flow:

=
1

n

∑
w∈W

∑
j∈J

uwjf
1
wj

+
1

n

∑
w∈W

1

2

∑
w′∈W\{w}

∑
j∈J

(
n− 1

n
f 1
w′j +

1

n
f 1
wj)uw′j +

1

2

∑
w′∈W\{w}

∑
j∈J

uw′jpj


Distributing the sum over W and reordering such that the sum over J is on the outside:

=
1

n

∑
w∈W

∑
j∈J

uwjf
1
wj +

1

2n

∑
j∈J

∑
w∈W

∑
w′∈W\{w}

n− 1

n
f 1
w′juw′j

+
1

2n

∑
j∈J

∑
w∈W

∑
w′∈W\{w}

1

n
f 1
wjuw′j +

1

2n

∑
j∈J

∑
w∈W

∑
w′∈W\{w}

uw′jpj

When the term being summed does not depend on w, the sum over w ∈ W then w′ ∈ W \{w}
is equivalent to n−1 times the sum over w ∈ W . When the term being summed does depend
on w, we can swap the order of summation to sum over w first:

=
1

n

∑
w∈W

∑
j∈J

uwjf
1
wj +

(n− 1)2

2n2

∑
w∈W

∑
j∈J

f 1
wjuwj

+
1

2n2

∑
j∈J

∑
w∈W ′

uw′j
∑

w∈W\{w′}

f 1
wj +

n− 1

2n

∑
j∈J

∑
w∈W

uwjpj
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Resolving the sum over w ∈ W \ {w′}:

=
n2 + 1

2n2

∑
w∈W

∑
j∈J

uwjf
1
wj +

1

2n2

∑
j∈J

∑
w′∈W

uw′j(pjn− f 1
w′j) +

n− 1

2n

∑
w∈W

∑
j∈J

uwjpj

Simplifying the expression,

=
1

2

∑
w∈W

∑
j∈J

uwjf
1
wj +

1

2

∑
w∈W

∑
j∈J

uwjpj.

This completes the inductive step.

Earlier, we introduced the algorithm RAND. When a job arrives, RAND assigns the
job to a worker uniformly at random. RAND can be viewed at a flow-guided algorithm,
where the flow from worker w to job type j is always pj if worker w is available and 0
otherwise. To be precise,

f twj =

{
pj w ∈ AW t

0 w /∈ AW t.

This flow satisfies uniform redistribution (equation 4.4), so RAND fits the condition of
theorem 4.2. This gives us an alternative means to calculate the expected performance of
RAND(W,J), using equation 4.5:

RAND(W,J) =
1

2

∑
w∈W

∑
j∈J

uwjpj +
1

2

∑
w∈W

∑
j∈J

uwjpj =
∑
w∈W

∑
j∈J

uwjpj.

Notice that the second term in equation 4.5 is exactly 1
2

RAND(W,J), regardless of which
initialization strategy is being used.

The DISPAT CH Algorithm

The algorithm DISPAT CH, introduced by Chang et al. [13], is a special flow-guided al-
gorithm in which the initial offline flow is f ∗wj(W,J) and the uniform redistribution update
rule is used. Using the closed form from theorem 4.2, we will show that DISPAT CH is
1
2
-competitive and that it is the best algorithm among all flow-guided algorithms that use

the uniform redistribution update rule.
From theorem 4.2 and lemma 4.1, the 1

2
-competitiveness of DISPAT CH follows. For

any instance (W,J, U,D(J)),

DISPATCH(W,J) =
1

2
TPP(W,J) +

1

2
RAND(W,J)

≥ 1

2
TPP(W,J)

≥ 1

2
OPT-OFF(W,J).
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Furthermore, since TPP(W,J) is the largest possible value of
∑

w∈W
∑

j∈J uwjf
1
wj, it is clear

that DISPAT CH is the optimal algorithm among all flow-guided algorithms that use the
uniform redistribution update rule.

From the closed form in theorem 4.2, we get a sense for which instances DISPAT CH is
expected to perform well on and which instances it is expected to perform poorly on. Rather
than just calculating the competitive ratio of DISPAT CH in a worst-case instance, we can
compute its competitive ratio for any instance. In particular,

DISPATCH(W,J)

OPT-OFF(W,J)
≥

1
2

TPP(W,J) + 1
2

RAND(W,J)

TPP(W,J)
=

1

2
+

1

2

RAND(W,J)

TPP(W,J)
(4.6)

In addition, thanks to our formula for DISPATCH(W,J), we can express an interesting
relationship between TPP(W,J) and OPT-OFF(W,J), in terms of RAND(W,J). We know

that the ratio OPT-OFF(W,J)
TPP(W,J)

is bounded above by 1. Now, we can lower bound it as well:

1

2
TPP(W,J) +

1

2
RAND(W,J) ≤ OPT-OFF(W,J) ≤ 1

=⇒ 1

2
+

1

2

RAND(W,J)

TPP(W,J)
≤ OPT-OFF(W,J)

TPP(W,J)
≤ 1. (4.7)

Both lower bounds (4.6 and 4.7) depend on the ratio RAND(W,J)
TPP(W,J)

. In general, RAND(W,J)
TPP(W,J)

∈
[0, 1]. In the worst case instance we presented earlier (section 4.3), RAND(W,J)

TPP(W,J)
→ 0 as n→∞.

On the other hand, consider an instance where all the uwj = 1. On such an instance,

RAND(W,J) = TPP(W,J). From equation 4.6, we see that, as RAND(W,J)
TPP(W,J)

→ 1, the bound

on the competitive ratio of DISPAT CH(W,J) grows stronger.

An Optimal Flow-Guided Algorithm

In this section, we will introduce an algorithm and prove that it has the best expected value
among all flow-guided algorithms. For this reason, we will call the algorithm OPT -FLOW .

In OPT -FLOW(W,J), we start by initializing the offline solution to be the optimal
solution to the transportation problem T PP(W,J). We update the offline solution at every
time step to match the optimal solution to the transportation problem on the remaining
workers:

f twj = f ∗wj(AW t, J).

Theorem 4.3. Let ALG be any flow-guided algorithm. For any instance (W,J, U,D(J)),

ALG(W,J) ≤ OPT-FLOW(W,J).

Proof. We proceed by induction on the size of W .
If |W | = 1, all flow algorithms are the same as OPT -FLOW , so the claim holds at

equality.
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Assume the claim holds for |W | = n−1. Let ALG(W,w, J) be the expected performance
of ALG(W,J) from the point where the set of available workers is W \ {w} onward. Recall
(from the same construction in the proof of theorem 4.2) that we can write the expected
performance of ALG(W,J) as

ALG(W,J) =
1

n

∑
w∈W

∑
j∈J

uwjf
1
wj +

1

n

∑
w∈W

ALG(W,w, J).

Since f 1 is feasible,

≤ 1

n
TPP(W,J) +

1

n

∑
w∈W

ALG(W,w, J).

ALG(W,w, J) is a flow-guided algorithm. Thus, by the inductive hypothesis,

≤ 1

n
TPP(W,J) +

1

n

∑
w∈W

OPT-FLOW(W \ {w}, J).

This is exactly the formula for the expected performance of OPT -FLOW(W,J):

= OPT-FLOW(W,J).

This completes the inductive step.

In fact, we can take this analysis a step further and write out an explicit formula
for OPT-FLOW(W,J). We break down the calculation of the expected performance of
OPT -FLOW(W,J) as follows. For each time step, we calculate the probability that the
set of available workers at time t is AW . Second, we calculate the expected utility gained at
time step t conditional on the set of available workers being AW . Finally, we sum over all
time steps t.

OPT-FLOW(W,J) =
n∑
t=1

∑
AW⊆W

|AW |=n−(t−1)

E
[
uWA

t jt
|AW t = AW

]
P (AW t = AW )

Substituting the expected utility at time t, given that AW is the set of available workers,

=
n∑
t=1

∑
AW⊆W

|AW |=n−(t−1)

TPP(AW, J)

|AW |
P (AW t = AW )
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Recall that the order in which workers are assigned is a random permutation of the set of
workers (lemma 4.2), so each of the

( |W |
|AW |

)
set of size |AW | are equally likely for AW t.

=
n∑
t=1

∑
AW⊆W

|AW |=n−(t−1)

TPP(AW, J)

|AW |
1( |W |
|AW |

)
Rewriting the sum,

=
∑

AW⊆W

1( |W |
|AW |

)TPP(AW, J)

|AW |
.

This formula requires summing over all subsets of W , so it takes exponential time to compute.

4.5 Evaluation-Guided Algorithms

In this section, we introduce a class of algorithms where, when a job j arrives, the worker
that it is assigned to is selected deterministically (as a function of AW t, J , and j). To
motivate this class of algorithms, we first describe how our problem can be modeled as a
Markov Decision Process and an optimal online algorithm computed in exponential time.

Best-Possible Online Algorithm

The problem of maximum online bipartite matching with i.i.d. arrivals can be modeled
as a Markov Decision Process (MDP) with an exponential number of states, which can be
described as a linear program of exponential size [51]. We will detail the MDP solution and
its dynamic programming solution, here.

In the MDP, there are 2n − 1 states, each one corresponding to a different non-empty
subset of W . The state, AW ⊆ W , tells us the subset of workers that remain available. See
figure 4.6 for an illustration. Let OPT-ON(AW, J) denote the value of the optimal MDP
policy from this state.

The value of the optimal MDP policy can be computed with dynamic programming.
Assume we are in the state where the set of remaining workers is AW . If a job of type j
arrives, then we would like to assign it to a worker w ∈ AW so that we maximize

uwj + OPT-ON(AW \ {w}, J).

Combining this with the probability that a job of type j arrives, we have the recursive
formula

OPT-ON(AW, J) =
∑
j∈J

pj max
w∈AW

{uwj + OPT-ON(AW \ {w}, J)}.
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{w1, w2, w3}

{w1, w3}{w2, w3} {w1, w2}

{w1}{w2}{w3}

Figure 4.6: Illustration of the states in the Markov Decision Process.

The dynamic programming solution first considers all subsets AW where |AW | = 1, then
where |AW | = 2, etc. At each state, it takes the sum over |J | = k terms, so its total running
time is at least Ω(k2n). This running time is prohibitively large for anything but very small
instances.

General Template for Evaluation-Guided Algorithms

Algorithm 4.2 gives a template for a generic evaluation-guided algorithm. The crux is that,
at each step, after a job type j arrives, a worker w is selected so as to maximize the current
utility, uwj, plus the expected utility from the state AW \ {w}. Since the exact value of the
state AW \ {w} cannot be calculated efficiently, a proxy is used. This comes in the form of
EFUNC, an evaluation function. For a given job type arriving, the choice of which worker
to assign is deterministic.

Algorithm 4.2 Template for Evaluation-Guided Algorithms

Input: W , J , U , D(J): the set of workers, set of job types, set of utilities, and distribution
over job types.

Input: An evaluation function EFUNC : P(W )× {J} → R.

Output: M̂ : a perfect matching between W and Ĵ .
1: M̂ ← ∅.
2: AW 1 ← W .
3: for t = 1, . . . , n do
4: ĵt arrives (type: jt ∈ J).
5: wAt = argmaxw∈AWt

{uwjt + EFUNC(AW t \ {w}, J)}.
6: M̂ ← M̂ ∪ [wAt , ĵt].
7: AW t+1 ← AW t \ {wA}.
8: end for
9: return M̂
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n

Figure 4.7: Instances in which the competitive ratio of a greedy algorithm tends to zero as
the number of workers tends to infinity.

Note that the class of evaluation-guided algorithms is not a subset of the class of flow-
guided algorithms. In flow-guided algorithms, there is a uniform probability of choosing each
worker at each time step. In evaluation-guided algorithms, this is not necessarily the case.

When we set the evaluation function, EFUNC(AW, J), to be OPT-ON(AW, J), then the
resulting evaluation-guided algorithm is the optimal online algorithm. However, we are more
interested in considering cases where the evaluation function can be computed efficiently.

Greedy

The purely greedy algorithm, GREEDY , is an evaluation-guided algorithm in which the
evaluation function is uniformly zero. That is, EFUNC(AW, J) = 0 for all AW ⊆ W .
GREEDY has arbitrarily bad competitive ratio. Consider the instance illustrated in

figure 4.7. There are n workers and 2 job types. Job type 1 arrives with probability n−1
n

.
Job type 2 arrives with probability 1

n
. The utility of assigning either job to worker 1 through

n − 1 is 0. The utility of assigning job 1 to worker n is 1. The utility of assigning job 2 to
worker n is n. Thus, GREEDY(W,J) always assigns the first job to arrive to worker n. On
the other hand OPT -ON (W,J) attains utility 1 if only jobs of type 1 arrive and utility n
if any jobs of type 2 arrive. We can calculate

GREEDY(W,J)

OPT-OFF(W,J)
=

p(j1 = 1)× 1 + p(j1 = 2)× n
p(j1 = . . . = jn = 1)× 1 + (1− p(j1 = . . . = jn = 1))× n

=
n−1
n
× 1 + 1

n
× n

(n−1
n

)n × 1 + (1− (n−1
n

)n)× n
.

As n→∞, this ratio goes to 0.
Even though it has arbitrarily bad competitive ratio, the greedy algorithm will still per-

form better than a purely random algorithm, in expectation, on all instances. The intuition
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is as follows: even though the greedy algorithm is deterministic given the arrivals, the fact
that the arrival order is inherently random introduces some randomness into the behavior
of the greedy algorithm.

Theorem 4.4. For any instance (W,J, U,D(J)),

GREEDY(W,J) ≥ RAND(W,J)

Proof. For the sake of this proof, it is helpful to re-frame the random arrival process. Instead
of sampling a random arrival ĵt from D(J) at each time step, imagine that we first sample
a set of n jobs from D(J) and then decide their arrival order. Because of the i.i.d. nature
of the problem, this two-step random processes is equivalent to our arrival model. Let
{ĵa1 , ĵa2 , . . . , ĵan} be the set of n jobs selected in the first step. The second step determines
the values of (a1, . . . , an), which is some permutation of (1, . . . , n).

Consider any some fixed ĵα, where its type, jα, has been decided but its arrival position,
α, has not. Without loss of generality, assume that we order the workers by their utility for
being matched to ĵα. That is,

u1ĵα ≥ u2ĵα ≥ . . . ≥ unĵα .

If ĵα is the first to arrive (α = 1), then it is necessarily assigned to worker 1. This occurs
with probability 1

n
. If ĵα is the second to arrive (α = 2), then it is necessarily assigned to

either worker 1 or worker 2. This also occurs with probability 1
n
. Combining these first two

events, we see that ĵα is assigned to worker 1 or 2 with probability at least 2
n
. This logic

continues. The probability that ĵα is assigned to worker z or better (meaning worker i, where
i ≤ z) can be bounded below by the probability that α ≤ z, which is exactly z

n
. Let IG

iĵα
be

the indicator random variable for the greedy algorithm assigning worker i to job ĵα. Then,

z∑
i=1

P
(
IG
iĵα

= 1
)
≥ P (α ≤ z) =

z

n
.

Let IR
iĵα

be a similar indicator random variable for the random algorithm. For the random

algorithm, the arrival order is irrelevant. For all i,

P
(
IR
iĵα

= 1
)

=
1

n
.

We will consider two random variables. The first is

UG
α =

n∑
i=1

uiĵαI
G
iĵα
,

which is the expected value of the assignment ĵα in the greedy algorithm. The second is

UR
α =

n∑
i=1

uiĵαI
R
iĵα
,
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which is the expected value of the assignment of ĵα in the random algorithm. Both UG
α and

UR
α are random variables which depend on α.

Recall that the uiĵα were assumed to be ordered (without loss of generality). The random

variable UG
α has first-order stochastic dominance over the random variable UR

α , because

P
(
UG
α ≥ uzĵα

)
=

z∑
i=1

P
(
IG
iĵα

= 1
)

≥ z

n

=
z∑
i=1

P
(
IR
iĵα

= 1
)

= P
(
UR
α ≥ uzĵα

)
.

From this stochastic dominance, we can conclude that the expected value of UG
α is necessarily

greater than or equal to the expected value of UR
α :

E
[
UG
α

]
≥ E

[
UR
α

]
.

There was nothing special about how we chose ĵα. So, by the linearity of expectation,
we can write:

GREEDY(W,J) =
∑

α∈{a1,...,an}

E
[
UG
α

]
≥

∑
α∈{a1,...,an}

E
[
UR
α

]
= RAND(W,J).

Derandomizing DISPAT CH
Recall from theorem 4.2 that DISPATCH(AW, J) can be computed efficiently for any set
of available workers AW . This gives rise to an interesting prospect. What if, instead
of running DISPAT CH, we used DISPATCH as an evaluation function? The result-
ing algorithm, EVAL-DISPAT CH(W,J), is an evaluation-guided algorithm. Like any
evaluation-guided algorithm, when a job arrives, a worker is assigned deterministically.
Thus, EVAL-DISPAT CH can be viewed as a derandomized version of DISPAT CH. In
EVAL-DISPAT CH(W,J), when a job of type j arrives, the worker assigned, w, maximizes

uwj + DISPATCH(AW \ {w}, J).

In the next theorem, we prove that EVAL-DISPAT CH(W,J) will perform at least as
well as DISPAT CH(W,J), in expectation, on every instance.

Theorem 4.5. For any instance (W,J, U,D(J)),

DISPATCH(W,J) ≤ EVAL-DISPATCH(W,J).
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Proof. We proceed by induction on the size of the set W . If |W | = 1, then both algorithms
have only one choice of which worker to assign, so the claim holds with equality. This
concludes the base case.

Now, assume that the claim holds for |W | = n − 1. For our inductive step, we will
prove the claim for |W | = n. As in previous proofs, we let DISPATCH(W,w, J) denote
the expected performance of DISPAT CH(W,J) from the point where the set of available
workers is W \ {w} onward. Starting from W , assume that a job of type j arrives. Let πw
be the probability that DISPAT CH(W,J) would assign worker w.

DISPATCH(W,J) =
∑
w∈W

πw(uwj + DISPATCH(W,w, J)) (4.8)

Continuing to run DISPAT CH(W,J) from the state W \ {w} is no better than running
DISPAT CH(W \ {w}, J) (restarting from the state W \ {w}). Thus,

≤
∑
w∈W

πw(uwj + DISPATCH(W \ {w}, J)). (4.9)

Because the πw sum to 1,

≤ max
w∈W

(uwj + DISPATCH(W \ {w}, J)).

Let w∗ be the maximizer:

= uw∗j + DISPATCH(W \ {w∗}, J).

From our inductive hypothesis,

≤ uw∗j + EVAL-DISPATCH(W \ {w∗}, J).

This is exactly the formula for the expected performance of EVAL-DISPAT CH(W,J)

= EVAL-DISPATCH(W,J).

Thus, induction is complete.

Derandomizing Other Algorithms

In our proof of theorem 4.5, the only place where we made use of a property of DISPAT CH
was in going from equation 4.8 to equation 4.9. In particular, DISPAT CH(W,J) has the
property that continuing to run DISPAT CH(W,J) from the state W \ {w} onward is no
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better than restarting DISPAT CH from the state W \{w}. To be precise, for any instance
(W,J, U,D(J) and any w ∈ W ,

DISPATCH(W,w, J) ≤ DISPATCH(W \ {w}, J).

This property is not unique to DISPAT CH. For example, it holds for RAND and
GREEDY . For any instance (W,J, U,D(J)) and any w ∈ W ,

RAND(W,w, J) = RAND(W \ {w}, J)

and
GREEDY(W,w, J) = GREEDY(W \ {w}, J).

Let ALG be an arbitrary algorithm for the online perfect bipartite matching problem and let
EVAL-ALG be the evaluation-guided algorithm which uses ALG as the evaluation function.
That is, when a job j arrives, EVAL-ALG always takes the worker w maximizing

uwj + ALG(AW \ {w}, J).

We say that EVAL-ALG is the derandomization of ALG. We offer the following generaliza-
tion of theorem 4.5, the proof of which is analogous:

Theorem 4.6. Let ALG be an algorithm such that, for any instance (W,J, U,D(J)) and
any w ∈ W ,

ALG(W,w, J) ≤ ALG(W \ {w}, J). (4.10)

Then, for any instance (W,J, U,D(J)),

ALG(W,J) ≤ EVAL-ALG(W,J).

Proof. Consider the proof of theorem 4.5, but replace every occurrence of DISPAT CH with
ALG and every occurrence of DISPATCH with ALG. The proof almost works as written,
except when going from equation 4.8 to equation 4.9. In this theorem, we assume that
ALG(W,w, J) ≤ ALG(W \ {w}, J) as a condition. Thus,∑

w∈W

πw(uwj + ALG(W,w, J)) ≤
∑
w∈W

πw(uwj + ALG(W \ {w}, J)).

The rest of the proof works as written (with the appropriate substitutions).

The condition of theorem 4.6 holds for any memoryless algorithm. An algorithm is
memoryless if its action from any state does not depend on the previous states it was in or
the previous actions that it took. If an algorithm is memoryless, then equation 4.10 holds
at equality. That said, even if an algorithm satisfies equation 4.10, it may not be useful to
derandomize it, because it may not be possible to compute ALG(AW \{w}, J) efficiently. For
example, while one could technically derandomizeOPT -FLOW , it would require computing
OPT-FLOW(AW \ {w}, J) at each step, which takes an exponential amount of time and is
therefore impractical.

In the following table, we consider three properties of the four algorithms we have pre-
sented so far:
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Memoryless Satisfies Equation 4.10 ALG(W,J) Computable Efficiently

RAND X X X
DISPAT CH X X
OPT -FLOW X X
GREEDY X X

For us to consider derandomizing ALG, the latter two criteria must hold: equation 4.10 is
satisfied (so that theorem 4.6 applies) and ALG(W,J) can be easily computed (so that run-
ning EVAL-ALG is practical). From the table, we see that both RAND and DISPAT CH
satisfy these criteria, so we consider both EVAL-RAND and EVAL-DISPAT CH to be
practical algorithms.

Finally, recall that DISPATCH(W,J) = 1
2

RAND(W,J) + 1
2

TPP(W,J) (theorem 4.2).
Thus far, we have established that the evaluation-guided algorithms EVAL-RAND and
EVAL-DISPAT CH can be run efficiently and perform at least as well as RAND and
DISPAT CH, in expectation, respectively. For the sake of completeness, we will also con-
sider the evaluation-guided algorithm EVAL-T PP , in which TPP is used as the evaluation
function. Unlike the evaluation functions RAND and DISPATCH, TPP is not derived from
the expected performance of an algorithm, so theorem 4.6 does not apply. In the next section,
we will see that the relative expected performance of EVAL-RAND, EVAL-DISPAT CH,
and EVAL-T PP is not well-behaved. For each of the three proposed algorithms, there exist
instances where it outperforms the other two, in expectation.

4.6 Empirical Study

In this chapter, we introduced seven algorithms that can be run efficiently (in the sense that

they run in polynomial time for any expectation graph G and realization graph Ĝ), including
three flow-guided algorithms and four evaluation-guided algorithms. The three flow-guided
algorithms were RAND, DISPAT CH, and OPT -FLOW . The four evaluation-guided
algorithms were GREEDY , EVAL-RAND, EVAL-DISPAT CH, and EVAL-T PP .

We have establish that certain algorithms perform at least as well as others, in expecta-
tion, on all instances. For example, for any instance, OPT-FLOW(W,J) ≥ DISPATCH(W,J).
In this section, our goal is to experimentally discover which pairs of algorithms can not be
simply compared. That is, for two algorithms, ALG1 and ALG2, we wish to find instances
W,J and W ′, J ′, where ALG1(W,J) > ALG2(W,J), but ALG2(W

′, J ′) > ALG1(W
′, J ′). If

we find such instances, then we know that we cannot make a simple comparison between
ALG1 and ALG2 that holds on all instances.

All of the aforementioned algorithm, except DISPAT CH, can be viewed as memoryless
policies for the Markov Decision Process. Given an expectation graph, we can compute
the exact expected performance of each algorithm using dynamic programming. This com-
putation takes an exponential amount of time, so it is practical only for a small number
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Rand Dispatch OptFlow Greedy EvalRand EvalDispatch EvalTPP

Rand = ≤ ≤ ≤ ≤ ≤ {≤empir}
Dispatch = ≤ <> {≤empir} ≤ {≤empir}
OptFlow = <> <> {≤empir} <>
Greedy = <> <> <>

EvalRand = <> <>
EvalDispatch = <>

EvalTPP =

Table 4.2: Comparison of all the algorithms presented for the maximum online perfect
bipartite matching problem with i.i.d. arrivals.

of workers. For DISPAT CH, we have an explicit formula (theorem 4.2). We tested 1000
randomly-generated instances with at most 10 workers and 10 job types and utilities selected
uniformly at random in [0, 1].

Table 4.2 presents all our results in one place, including theoretical results and practical
ones. For the comparison between two algorithms, ALG1 andALG2. There are three possible
results:

• The notation ALG1 ≤ ALG2 means that ALG2 provably performs at least as well
as ALG1, in expectation, on all instances. These results follow from the preceding
theoretical work in this chapter.

• The notation ALG1 <> ALG2 means that there exist instances where ALG1 outper-
forms ALG2 in expectation and there exist instances where ALG2 outperforms ALG1
in expectation. In appendix B, we present a set of four “representative” instances out
of the 1000 which are sufficient to prove all the “<>” relations.

• The notation ALG1{≤empir}ALG2 means that that ALG2 performed at least as well as
ALG1 on all 1000 instances in our empirical study, but we have not presented a rigorous
proof that ALG2 will always outperform ALG1 in expectation on all instances. Thus,
we cannot distinguish between ALG1 ≤ ALG2 and ALG1 <> ALG2. However, the
empirical evidence points to ALG1 ≤ ALG2.

One major conclusion from our study was that, among the four evaluation-guided algo-
rithms, every pair had the “<>” relation. This is particularly notable because we proved
that RAND(W,J) ≤ GREEDY(W,J) for all instances (theorem 4.4). However,

GREEDY <> EVAL-RAND .

Another major conclusion was that, amongOPT -FLOW and three of the four evaluation-
guided algorithms (GREEDY , EVAL-RAND, and EVAL-T PP), every pair had the “<>”
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relation. Although we proved that DISPATCH(W,J) ≤ OPT-FLOW(W,J) for all instances
(theorem 4.3), in our empirical study we found that

OPT -FLOW{≤empir} EVAL-DISPAT CH .

This demonstrates the effectiveness of our derandomization technique.

4.7 Conclusion

In this chapter, we studied the maximum online perfect bipartite matching problem with
i.i.d. arrivals. We introduced two classes of algorithms for the problems: the class of flow-
guided algorithms and the class of evaluation-guided algorithms. A total of seven specific
algorithms were studied, including the three flow-guided algorithms RAND, DISPAT CH,
andOPT -FLOW , as well as the four evaluation-guided algorithms GREEDY , EVAL-RAND,
EVAL-DISPAT CH, and EVAL-T PP .

We showed thatDISPAT CH, EVAL-DISPAT CH, andOPT -FLOW are 0.5-competitive
and that 0.5 is the best possible competitive ratio. We also gave an instance-specific lower
bound on the competitive ratio, which can provide a better-than-0.5 lower bound in non-
worst-case instances. On the other hand, RAND and GREEDY have arbitrarily bad com-
petitive ratios.

The seven algorithms can be partially ordered. In our theoretical work, we showed that,
for some pairs of the algorithms, we can guarantee that one will always perform at least
as well as the other, in expectation, on all instances of the problem: GREEDY will always
perform at least as well as RAND in expectation, OPT -FLOW will always perform at
least as well as any other flow-guided algorithm in expectation, and EVAL-DISPAT CH
and EVAL-RAND will always perform at least as well as DISPAT CH and RAND, in
expectation, respectively.

Finally, we showed that several of the algorithms could not be ordered. In particular, for
each pair of the four evaluation-guided algorithms, ALG1 and ALG2, there exists instances
whereALG1 outperformsALG2 in expectation and instances whereALG2 outperformsALG1
in expectation.
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Chapter 5

Conclusion

In this dissertation, we surveyed three NP-hard combinatorial optimization problems phrased
on graphs. The problems were unrelated. The unifying theme was our approach. For each
problem, we proposed a new, tailored algorithm for it. Our analysis of each algorithm
furthered our understanding of a theoretical property of the corresponding problem, such as
asymptotic complexity or competitive ratio.

In chapter 2, we considered the minimum k-terminal cut problem. We presented a
practical branch-and-bound algorithm for this NP-hard problem. Our branch-and-bound
algorithm used on a novel integer relaxation of the integer programming formulation known
as the CKR formulation. Our relaxation could be solved with minimum isolating cuts.
Thus, we called our algorithm Isolating Cut Branch-and-Bound. In an empirical
experiment, we saw that Isolating Cut Branch-and-Bound was an order of magnitude
faster than linear-programming-based branch-and-bound with Gurobi on twenty-four real-
world instances. We proved that the complexity of Isolating Cut Branch-and-Bound
is fixed-parameter tractable with respect to the size of the optimal solution. We also showed
that, in any (k − 1)-stable instance of k-terminal cut, the source sets of the minimum
isolating cuts are the source sets of the unique optimal solution of that k-terminal cut

instance. Thus, (k − 1)-stable instances of k-terminal cut can be solved in the time it
takes to compute k − 1 minimum (s, t)-cuts.

In chapter 3, we considered the problem of finding valid distance drawings of signed
graphs in Rk. We addressed the question of finding L(n), the smallest dimension such that
every signed graph with n nodes has a valid embedding in RL(n). In general, we showed that
blog5(n − 3)c + 1 ≤ L(n) ≤ n − 2. We phrased the embedding problem as an optimization
problem, introducing the algorithm Valid Drawing. Using our algorithm, we computed
L(n) for n up to 7. We also calculated the embedding of Kn

2
,n
2

for even n up to n = 24. This

led us to conjecture that L(n) ∼ 3
4
n.

In chapter 4, we considered the maximum online perfect bipartite matching problem
with i.i.d. arrivals. We introduced two classes of algorithms for the problems: the class
of flow-guided algorithms and the class of evaluation-guided algorithms. A total of seven
specific algorithms were introduced, including the three flow-guided algorithms (RAND,
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DISPAT CH, and OPT -FLOW), as well as four evaluation-guided algorithms (GREEDY ,
EVAL-RAND, EVAL-DISPAT CH, and EVAL-RAND). We give an exact formula for
the performance of DISPAT CH on all instances and proved that it is the optimal algorithm
among all flow-guided algorithms which use the uniform redistribution update rule. We
also proved that OPT -FLOW is the optimal algorithm among all flow-guided algorithms,
regardless of which update rule they use. In terms of competitive ratio, we proved that
DISPAT CH, EVAL-DISPAT CH, and OPT -FLOW are 0.5-competitive and that 0.5
is the best possible competitive ratio. On the other hand, RAND and GREEDY have
arbitrarily bad competitive ratios. The seven algorithms can be partially ordered: for some
pairs of the algorithms, one is guaranteed to always perform at least as well as the other, in
expectation, on all instances. For example, we showed that GREEDY will always perform
at least as well as RAND, in expectation, on all instances and EVAL-DISPAT CH will
always perform at least as well as DISPAT CH, in expectation, on all instances. On the
other hand, in practical experiments, we showed that the evaluation-guided algorithms could
not be ordered. For any two of the four evaluation-guided algorithms, we found at least
one instance where the first was dominant and at least one instance where the second was
dominant.
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Gap for the Călinescu-Karloff-Rabani Relaxation for Multiway Cut”. In: International
Conference on Integer Programming and Combinatorial Optimization. Springer. 2017,
pp. 39–50.

[4] Nikhil Bansal et al. “An O(log2 k)-competitive algorithm for metric bipartite match-
ing”. In: European Symposium on Algorithms. Springer. 2007, pp. 522–533. doi: 10.
1007/978-3-540-75520-3\_47.

[5] Aharon Ben-Tal and Arkadi Nemirovski. “Robust solutions of linear programming
problems contaminated with uncertain data”. In: Mathematical programming 88.3
(2000), pp. 411–424.

[6] Yonatan Bilu and Nathan Linial. “Are stable instances easy?” In: Combinatorics, Prob-
ability and Computing 21.5 (2012), pp. 643–660.

[7] Yuri Boykov, Olga Veksler, and Ramin Zabih. “Markov random fields with efficient
approximations”. In: Computer vision and pattern recognition, 1998. Proceedings. 1998
IEEE computer society conference on. IEEE. 1998, pp. 648–655.

[8] Brian Brubach et al. “New Algorithms, Better Bounds, and a Novel Model for Online
Stochastic Matching”. In: 24th Annual European Symposium on Algorithms. Vol. 57.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 24:1–24:16. doi: 10.4230/
LIPIcs.ESA.2016.24.

[9] Sebastien Bubeck et al. “K-Server via Multiscale Entropic Regularization”. In: Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM.
2018, pp. 3–16. doi: 10.1145/3188745.3188798.

[10] Niv Buchbinder, Joseph Seffi Naor, and Roy Schwartz. “Simplex partitioning via expo-
nential clocks and the multiway cut problem”. In: Proceedings of the forty-fifth annual
ACM symposium on Theory of computing. ACM. 2013, pp. 535–544.



BIBLIOGRAPHY 69
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Figure A.1: The average running time of Isolating Cut Branch-and-Bound versus
Gurobi Integer Programming on ten random instances of k-terminal cut generated using
the PowerlawCluster model.
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Appendix B

Notable Instances of Online Perfect
Matching with i.i.d. Arrivals

In our empirical study, we generated 1000 random instances and computed the exact expected
performance of all seven algorithms on each instance. The running time of computing the
expected performance of each algorithm was exponential in the number of workers, so we
limited ourselves to random instances with at most 10 workers and 10 job types. The utilities
in each expectation graph were selected uniformly at random in [0, 1]. The relative expected
performance of the algorithms is scale-invariant, so any instance on at most 10 workers and
10 job types can be represented this way.

From all 1000 instances, we generated table 4.2, comparing the relative expected perfor-
mance of the seven algorithms. In this appendix, we present a set of four “representative”
instances out of the 1000. If we wrote ALG1 <> ALG2 in table 4.2, then there exist two
instances among these four, (W,J) and (W ′, J ′), where ALG1(W,J) > ALG2(W,J), but
ALG1(W

′, J ′) < ALG2(W
′, J ′). For the sake of presentation, we scaled and rounded the

utilities of the four instances, checking to ensure that the relative expected performance of
the algorithms was preserved.

The relative expected performance of the algorithms on these four instances is summa-
rized in the following table:

Instance Algorithms

B.1 GREEDY(W,J) > EVAL-TPP(W,J) > EVAL-DISPATCH(W,J) > EVAL-RAND(W,J) > OPT-FLOW(W,J)

B.2 OPT-FLOW(W,J) > EVAL-TPP(W,J) > DISPATCH(W,J) > GREEDY(W,J)

B.3 EVAL-RAND(W,J) > EVAL-DISPATCH(W,J) > GREEDY(W,J) > OPT-FLOW(W,J) > EVAL-TPP(W,J)

B.4 EVAL-TPP(W,J) > EVAL-DISPATCH(W,J) > OPT-FLOW(W,J) > EVAL-RAND(W,J) > GREEDY(W,J)

The code for our empirical study can be found here:

https://github.com/marvel2010/dispatch-variants.
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Figure B.1: An instance, discovered through random experiments, on which the greedy al-
gorithm outperforms all the other evaluation-guided algorithms in expectation. Plus, all
the evaluation-guided algorithms outperform the optimal flow-guided algorithm in expecta-
tion. To be precise, GREEDY(W,J) > EVAL-TPP(W,J) > EVAL-DISPATCH(W,J) >
EVAL-RAND(W,J) > OPT-FLOW(W,J).
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Figure B.2: An instance on which the optimal flow-guided algorithm outperforms the
evaluation-guided algorithms EvalTPP and Greedy in expectation. In addition, the flow-
guided algorithm Dispatch also outperforms the evaluation-guided algorithm Greedy in
expectation. To be precise, OPT-FLOW(W,J) > EVAL-TPP(W,J) > DISPATCH(W,J) >
GREEDY(W,J).
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Figure B.3: An instance, discovered through random experiments, on which the evaluation-
guided algorithm EvalRand outperforms all the other evaluation-guided algorithms
in expectation. To be precise, EVAL-RAND(W,J) > EVAL-DISPATCH(W,J) >
GREEDY(W,J) > OPT-FLOW(W,J) > EVAL-TPP(W,J).
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Figure B.4: An instance, discovered through random experiments, on which the optimal
flow-guided algorithm outperforms the evaluation-guided algorithm EvalRand in expecta-
tion. To be precise, EVAL-TPP(W,J) > EVAL-DISPATCH(W,J) > OPT-FLOW(W,J) >
EVAL-RAND(W,J) > GREEDY(W,J).


